Integral Experiments Data, Databases, Benchmarks and Safety Joint Projects
NEA-1551 ZZ-BWRSB-FORSMARK.
last modified: 12-FEB-2002 | catalog | new | search |

NEA-1551 ZZ-BWRSB-FORSMARK.

ZZ BWRSB-FORSMARKS, Stability Benchmark Data from BWR FORSMARKS 1 and 2

top ]
1. NAME OR DESIGNATION OF PROGRAM:  ZZ-BWRSB-FORSMARKS
top ]
2. COMPUTERS

To submit a request, click below on the link of the version you wish to order. Rules for end-users are available here.

Program name Package id Status Status date
ZZ-BWRSB-FORSMARK NEA-1551/01 Arrived 12-FEB-2002

Machines used:

Package ID Orig. computer Test computer
NEA-1551/01 Many Computers
top ]
3. DESCRIPTION OF PROGRAM OR FUNCTION

The purpose of this benchmark is the intercomparison of the different time series analysis methods that can be applied to the study of BWR stability. This is a follow-up benchmark to the Ringhals 1 Stability Benchmark. While the Ringhals 1 Stability Benchmark included both time domain and frequency domain calculation models to predict stability parameters, the new benchmark is focused in the analysis of time series data by means of noise analysis techniques in the time domain.
The first goal is to elucidate if it is possible to determine the main stability parameters from the neutronic signals time series with enough reliability and accuracy. Typically, the main stability parameters are assumed to be the decay ratio (DR) and the frequency of the oscillation. However, there are other parameters that provide valuable information, such us the Lyapunov exponents associated to the time series, or the Haussdorff dimension. In fact, the Lyapunov exponents are also a measure of the stability of the neutronic time series.
The data given in this benchmark were obtained during several stability tests performed at the Swedish BWR reactors Forsmarks 1 and 2, in the period 1989 to 1997.
The database is divided into six cases, the sampling rate of all the time series being 25 Hz, decimated to 12.5 Hz. The data are stored column wise in ASCII format. No filter to the signals and the DC-component has not been subtracted.

CASE 1: This case contains the neutron flux signals measured during several tests. The objective of the case is to study several signals ranging from stable to quasi-unstable conditions. The signals are standard measurements with no distortions. Data contains measured APRM (Average Power Range Monitor) signals from stability tests. The signals are measured at conditions with low Decay-Ratios up to high Decay-Ratios.
CASE 2: This case addresses the importance of the time duration of measured data. Theobjective of this case is to study the variability of the DR and oscillation frequency with the measurement time duration. There are two time series to analyse. Each one has about 14000 points, and will be divided in blocks of approximately 4000 and 2000 points. The results for the short time series will be compared with the original long series results.
CASE 3: APRM data for this case contains more than one natural frequency of the core. The data also contains peaks of other  frequencies due to the actuation of the pressure controller. One case has two frequencies close to each other. Cases with more than one natural frequency make the analysis much more difficult. This case contains five measurements contaminated with influences from the plant control systems. In this case, the time series have a bad behaviour, and consequently the standard stability parameters are not clear. It could then be interesting to analyse a set of the dominant poles of the transfer function obtained from the time series.
CASE 4: This case contains a mixture between a global oscillation mode and a regional (half core) oscillation. The case consists of APRM and LPRM (Local PRM) signals coming from one test.
CASE 5: This case is focused on the analysis of two APRM-signals obtained during a small plant transient, that resulted in a bad behaviour of the signals. In this case, it is important to analyse the first dominant poles of the transfer function obtained from the time series. Note that this is a non-stationary case and the autoregressive methods have a limited validity.
CASE 6: This test case shows local (channel) oscillations. The data contains APRM and LPRM signals from two tests that were performed close to each other, both in time and in the operating conditions.
top ]
4. METHODS: METHOD OF SOLUTION
top ]
5. RESTRICTIONS ON THE COMPLEXITY OF THE PROBLEM

The use of this data is limited to the NSC Stability Benchmark, and any other use or publication of this information should be previously approved by Forsmarks Kraftgrupp AB.
top ]
6. TYPICAL RUNNING TIME
top ]
7. UNUSUAL FEATURES: UNUSUAL FEATURES OF THE PROGRAM
top ]
8. RELATED OR AUXILIARY PROGRAMS: RELATED AND AUXILIARY PROGRAMS
top ]
9. STATUS
Package ID Status date Status
NEA-1551/01 12-FEB-2002 Masterfiled restricted
top ]
10. REFERENCES

- Tomas Lefvert:
  Proposed Benchmark for Core Stability Evaluation Methods
  presented at the Eighth Nuclear Science Committee Meeting
  9-11 June 1997
  FTT-A1200/PAK (May 1997)
NEA-1551/01, included references:
- G. Verdu, M.J. Palomo, A. Escriva, D. Ginestar:
  FORSMARKS 1 AND 2 Stability benchmark
  Final Problem Specifications.
  NEA/NSC/DOC(98)2 (June 1998)
top ]
11. HARDWARE REQUIREMENTS
top ]
12. PROGRAMMING LANGUAGE(S) USED
No specified programming language
top ]
13. SOFTWARE REQUIREMENTS
top ]
14. OTHER PROGRAMMING OR OPERATING INFORMATION OR RESTRICTIONS
top ]
15. ESTABLISHMENT

    G. Verdu, M.J. Palomo, A. Escriva
    Department of Chemical & Nuclear Engineering
    Polytechnic University of Valencia
    P.0. Box 22012
    46071 Valencia, Spain
  
    D. Ginestar
    Department of Applied Mathematics
    Polytechnic University of Valencia
    P.0. Box 22012
    46071 Valencia, Spain

Data released by:
    Per Lansaker
    Vattenfall
    Forsmarksverket
    S-74203 OESTHAMMAR, Sweden
top ]
16. MATERIAL AVAILABLE
NEA-1551/01
MISTP: LIST List of files
DATTP: C1_APRM.1 Case 1 APRM test 1
DATTP: C1_APRM.2 Case 1 APRM test 2
DATTP: C1_APRM.3 Case 1 APRM test 3
DATTP: C1_APRM.4 Case 1 APRM test 4
DATTP: C1_APRM.5 Case 1 APRM test 5
DATTP: C1_APRM.6 Case 1 APRM test 6
DATTP: C1_APRM.7 Case 1 APRM test 7
DATTP: C1_APRM.8 Case 1 APRM test 8
DATTP: C1_APRM.9 Case 1 APRM test 9
DATTP: C1_APRM.10 Case 1 APRM test 10
DATTP: C1_APRM.11 Case 1 APRM test 11
DATTP: C1_APRM.12 Case 1 APRM test 12
DATTP: C1_APRM.13 Case 1 APRM test 13
DATTP: C1_APRM.14 Case 1 APRM test 14
DATTP: C2_TEST.L1 Case 2 time series 1 long
DATTP: C2_TEST.L2 Case 2 time series 2 long
DATTP: C2_TEST.S11 Case 2 time series 1 short 1
DATTP: C2_TEST.S12 Case 2 time series 1 short 2
DATTP: C2_TEST.S21 Case 2 time series 1 short 1
DATTP: C2_TEST.S22 Case 2 time series 1 short 2
DATTP: C2_TEST.S31 Case 2 time series 1 short 1
DATTP: C2_TEST.S32 Case 2 time series 1 short 2
DATTP: C2_TEST.S41 Case 2 time series 1 short 1
DATTP: C2_TEST.S42 Case 2 time series 1 short 2
DATTP: C3_TEST.1 Case 3 Test 1
DATTP: C3_TEST.2 Case 3 Test 2
DATTP: C3_TEST.3 Case 3 Test 3
DATTP: C3_TEST.4 Case 3 Test 4
DATTP: C3_TEST.5 Case 3 Test 5
DATTP: C4_APRM Case 4 APRM
DATTP: C4_LPRM.1 Case 4 LPRM Position 01
DATTP: C4_LPRM.2 Case 4 LPRM Position 02
DATTP: C4_LPRM.3 Case 4 LPRM Position 03
DATTP: C4_LPRM.4 Case 4 LPRM Position 04
DATTP: C4_LPRM.5 Case 4 LPRM Position 05
DATTP: C4_LPRM.6 Case 4 LPRM Position 06
DATTP: C4_LPRM.7 Case 4 LPRM Position 07
DATTP: C4_LPRM.8 Case 4 LPRM Position 08
DATTP: C4_LPRM.9 Case 4 LPRM Position 09
DATTP: C4_LPRM.10 Case 4 LPRM Position 10
DATTP: C4_LPRM.11 Case 4 LPRM Position 11
DATTP: C4_LPRM.12 Case 4 LPRM Position 12
DATTP: C4_LPRM.13 Case 4 LPRM Position 13
DATTP: C4_LPRM.14 Case 4 LPRM Position 14
DATTP: C4_LPRM.15 Case 4 LPRM Position 15
DATTP: C4_LPRM.16 Case 4 LPRM Position 16
DATTP: C4_LPRM.17 Case 4 LPRM Position 17
DATTP: C4_LPRM.18 Case 4 LPRM Position 18
DATTP: C4_LPRM.19 Case 4 LPRM Position 19
DATTP: C4_LPRM.20 Case 4 LPRM Position 20
DATTP: C4_LPRM.21 Case 4 LPRM Position 21
DATTP: C4_LPRM.22 Case 4 LPRM Position 22
DATTP: C5_APRM.1 Case 5 APRM test 1
DATTP: C5_APRM.2 Case 5 APRM test 2
DATTP: C6_APRM.1 Case 6 APRM test 1
DATTP: C6_APRM.2 Case 6 APRM test 2
DATTP: C6_LPRM.11 Case 6 LPRM test 1 Position 01
DATTP: C6_LPRM.21 Case 6 LPRM test 1 Position 02
DATTP: C6_LPRM.31 Case 6 LPRM test 1 Position 03
DATTP: C6_LPRM.41 Case 6 LPRM test 1 Position 04
DATTP: C6_LPRM.51 Case 6 LPRM test 1 Position 05
DATTP: C6_LPRM.61 Case 6 LPRM test 1 Position 06
DATTP: C6_LPRM.71 Case 6 LPRM test 1 Position 07
DATTP: C6_LPRM.81 Case 6 LPRM test 1 Position 08
DATTP: C6_LPRM.91 Case 6 LPRM test 1 Position 09
DATTP: C6_LPRM.101 Case 6 LPRM test 1 Position 10
DATTP: C6_LPRM.111 Case 6 LPRM test 1 Position 11
DATTP: C6_LPRM.121 Case 6 LPRM test 1 Position 12
DATTP: C6_LPRM.131 Case 6 LPRM test 1 Position 13
DATTP: C6_LPRM.141 Case 6 LPRM test 1 Position 14
DATTP: C6_LPRM.151 Case 6 LPRM test 1 Position 15
DATTP: C6_LPRM.161 Case 6 LPRM test 1 Position 16
DATTP: C6_LPRM.171 Case 6 LPRM test 1 Position 17
DATTP: C6_LPRM.181 Case 6 LPRM test 1 Position 18
DATTP: C6_LPRM.12 Case 6 LPRM test 2 Position 01
DATTP: C6_LPRM.22 Case 6 LPRM test 2 Position 02
DATTP: C6_LPRM.32 Case 6 LPRM test 2 Position 03
DATTP: C6_LPRM.42 Case 6 LPRM test 2 Position 04
DATTP: C6_LPRM.52 Case 6 LPRM test 2 Position 05
DATTP: C6_LPRM.62 Case 6 LPRM test 2 Position 06
DATTP: C6_LPRM.72 Case 6 LPRM test 2 Position 07
DATTP: C6_LPRM.82 Case 6 LPRM test 2 Position 08
DATTP: C6_LPRM.92 Case 6 LPRM test 2 Position 09
DATTP: C6_LPRM.102 Case 6 LPRM test 2 Position 10
DATTP: C6_LPRM.112 Case 6 LPRM test 2 Position 11
DATTP: C6_LPRM.122 Case 6 LPRM test 2 Position 12
DATTP: C6_LPRM.132 Case 6 LPRM test 2 Position 13
DATTP: C6_LPRM.142 Case 6 LPRM test 2 Position 14
DATTP: C6_LPRM.152 Case 6 LPRM test 2 Position 15
DATTP: C6_LPRM.162 Case 6 LPRM test 2 Position 16
DATTP: C6_LPRM.172 Case 6 LPRM test 2 Position 17
DATTP: C6_LPRM.182 Case 6 LPRM test 2 Position 18
REPTP: Report NEA/NSC/DOC(98)2 (June 1998)
MISTP: Abstract
Original files. See Y98F02.
top ]
17. CATEGORIES
  • Y. Integral Experiments Data, Databases, Benchmarks

Keywords: BWR reactors, reactor stability.