NEA-1552/03, bibliography:
SINBAD-TIARA
============
Background references:
[8] K. Shin, Y. Uwamino and T. Hyodo : 'Propagation of Errors from Response Functions to Unfolded Spectrum', Nucl. Technol., 53, 78 (1981).
[9] N. Nakao, T. Nakamura, M. Baba, Y. Uwamino, N. Nakanishi, H. Nakashima and Sh. Tanaka : 'Measurements of Response Function of Organic Liquid Scintillator for Neutron Energy Range up to 135 MeV', Nucl. Instrum. Methods, A362, 454 (1995).
[10] W. N. McElroy, S. Berg, T. Crokett and R. G. Hawkins : 'A Computer Automated Iterative Methods for Neutron Flux Spectra Determination by Foil Activation', AFWL-TR-67-41, Air Force Weapons Laboratory, Kirtland Air Force Base, vol. 1-4 (1967).
[11] Y. Uwamino, T. Nakamura and A. Hara: 'Two Type of Multi-Moderator Neutron Spectrometers: Gamma-Ray Insensitive Type and High-Efficiency Type', Nucl. Instrum. Methods in Phys. Res., A239, 299 (1985).
[12] K. Shibata et al.: 'Japanese Evaluated Nuclear Data Library, Version-3 -JENDL-3-', JAERI 1319(1990).
[13] P. W. Lisowski et al.: 'Fission Cross Sections in the Intermediate Energy Region', Proc. Spec. Meet. on Neutron Cross Section Standards for the Energy Region above 20 MeV, Uppsala, Sweden, 21-23 May, 1991, p.177-186 (1991).
NEA-1552/03, included references:
[1] Y. Nakane, K. Hayashi, Y. Sakamoto, N. Yoshizawa, N. Nakao, S. Ban, H.
Hirayama, Y. Uwamino, K. Shin and T. Nakamura: Neutron Transmission Benchmark
Problems for Iron and Concrete Shields in Low, Intermediate and High Energy
Proton Accelerator Facilities, JAERI-Data/Code 96-029, (1996).
[2] H. Nakashima, N. Nakao, Sh. Tanaka, T. Nakamura, K. Shin, Su. Tanaka, S.
Meigo, Y. Nakane, H. Takada, Y. Sakamoto and M. Baba : Experiments on Iron
Shield Transmission of Quasi-monoenergetic Neutrons Generated by 43- and 68-MeV
Protons via the 7Li(p,n) Reaction, JAERI-Data/Code 96-005, (1996).
[3] N. Nakao, H. Nakashima, Y. Sakamoto, Y. Nakane, Sh. Tanaka, Su. Tanaka, T.
Nakamura, K. Shin and M. Baba: Experimental Data on Concrete Shield
Transmission of Quasi-monoenergetic Neutrons Generated by 43- and 68-MeV
Protons via the 7Li(p,n) Reaction, JAERI-Data/Code 97-020 (1997).
[4] N. Nakao, H. Nakashima, M. Nakao, Y. Sakamoto, Y. Nakane, Su. Tanaka, Sh.
Tanaka and T. Nakamura: Experimental Data on Polyethylene Shield Transmission
of Quasi-monoenergetic Neutrons Generated by 43- and 68-MeV Protons via the
7Li(p,n) Reaction, JAERI-Data/Code 98-013 (1998).
[5] H. Nakashima, N. Nakao, Sh. Tanaka, T. Nakamura, K. Shin, Su. Tanaka, H.
Takada, S. Meigo, Y. Nakane, Y. Sakamoto and M. Baba : Transmission through
Shields of Quasi-Monoenergetic Neutrons Generated by 43- and 68-MeV Protons.
Part-II: Iron Shielding Experiment and Analysis for Investigating Calculation
Methods and Cross Section Data, Nucl. Sci. Eng. 124, No. 2 (October 1996) 243.
[6] N. Nakao, H. Nakashima, T. Nakamura, Sh. Tanaka, Su. Tanaka, K. Shin, M.
Baba, Y. Sakamoto and Y. Nakane : Transmission through Shields of
Quasi-Monoenergetic Neutrons Generated by 43- and 68-MeV Protons. Part-I:
Concrete Shielding Experiment and Calculation for Practical Application, Nucl.
Sci. Eng. 124, No. 2 (October 1996) 228.
[7] N. Nakao, M. Nakao, H. Nakashima, Su. Tanaka, Y. Sakamoto, Y. Nakane, Sh.
Tanaka and T. Nakamura: Measurements and Calculations of Neutron Energy Spectra
Behind Polyethylene Shields Bombarded by 40- and 65-MeV Quasi-Monoenergetic
Neutron Sources, J. Nucl. Sci. Technol., 34(4) (1997) pp348-359.
[14] C. Konno, F. Maekawa, M. Wada, H. Nakashima, K. Kosako: DORT Analysis of
Iron and Concrete Shielding Experiments at JAERI/TIARA, JAERI-Conf 99-002,
p.164-169 (1999).
[15] N. E. Hertel, T. M. Evans: Benchmarking the LAHET Elastic Scattering Model
for APT Design Applications, ERDA Final Report, Prepared for the Westinghouse
Savannah River Company under ERDA Task Order 96-081, JEFDOC-715 (1997).
[16] A.J. Koning: MCNPX analysis of 68 MeV neutron transmission on iron,
JEFDOC-769 (1998).
[17] Ch. Konno et al.: Analyses of the TIARA experiments using the LA-150
cross-section data library, JEFDOC-808 (1999).
[18] A. Koning: Processing and validation of intermediate energy evaluated data
files, JEFDOC-838 (May 2000).
NEA-1552/08, bibliography:
SINBAD-65P
==========
Background references:
[1] Shin K., Ishii Y., Miyahara K., Uwamino Y., Sakai H. and Numata S.: Transmission of Intermediate-Energy Neutrons and Associated Gamma Rays Through Iron, Lead, Graphite, and Concrete Shields, Nucl. Sci. Eng., 109, 380-390 (1991).
[2] K. Shin et al., Nucl. Technol., 53, 78 (1981).
[3] K. Hayashi, et al.: Accelerator Shielding Benchmark Analysis and Future Items to be Solved, SATIF Proceedings of the Specialists Meeting, Arlington, USA, 28-29 April 1994, OECD 1995
[4] H. Nakashima, et al.: Accelerator Shielding Benchmark Experiment Analyses, SATIF-2 Proceedings of the Specialists' Meeting, CERN, Geneva, Switzerland, 12-13 Oct. 1995, OECD 1996
NEA-1552/08, included references:
[5] H. Nakashima et al.:
Benchmark Problems for Intermediate and High Energy Accelerator Shielding
JAERI-Data/Code 94-012 (September 1994)
NEA-1552/10, bibliography:
SINBAD-ROESTI
=============
Background references:
[6] R.G. Alsmiller, Jr., F.S. Alsmiller and O.W. Hermann: The high-energy transport code HETC88 and comparisons with experimental data, Nucl. Instr. Meth. A295, 337-343 (1990)
NEA-1552/10, included references:
[1] J.S. Russ et al.:
Low-Energy Neutron Measurements in an Iron Calorimeter Structure Irradiated
by 200 GeV/c Hadrons (CERN/TIS-RP/89-02) (1989) (*)
[2] A. Fasso et al.:
Measurements of Low-Energy Neutrons in an Iron Calorimeter Structure Irradiated
by 24 GeV/c Protons (CERN/TIS-RP/90-19) (1990) (*)
[3] G.R. Stevenson et al.:
Measurements of Low-Energy Neutrons in a Lead Calorimeter Structure
Irradiated by 200 GeV/c Hadrons (CERN-TIS/RP/91-11) (1991) (*)
[4] A. Fasso et al.:
FLUKA Simulations of the Rosti Experiments
CERN/TIS-RP/IR/92-44 (11 December 1992)
[5] A. Fasso:
A Comparison of FLUKA Simulations with Measurements of Fluence and Dose
in Calorimeter Structures
Nuclear Instruments and Methods in Physics Research A 332(1993) 459-468 (1993)
(*) Note that the 32S(n,p)32P activities and the dosimetric data reported in
the original reports were corrected later due to new calibrations.
NEA-1552/12, included references:
[1] L. Heilbronn et al.
"Neutron yields from 435 MeV/nucleon Nb stopping in Nb
and 272 MeV/nucleon Nb stopping in Nb and Al", Physical Review C, vol. 58,
No.6, pp. 3451-3460 (1998).
[2] R.A. Cecil et al.
Improved predictions of neutron detection efficiency for hydrocarbon
scintillators from 1 MeV to about 300 MeV", Nuclear Instruments
and Methods in Phys. Res., vol. 161, p. 439 (1979).
NEA-1552/14, bibliography:
SINBAD-RIKEN
============
Background references:
[2] Cecil R.A., Anderson B.D., Madey R.: Nucl. Instr. And Meth. 161, 439 (1979).
[3] Schery S.D., et al.: Nucl. Instr. And Meth. 147, 399 (1977).
[3] Nakao N. homepage: http://idsun1.kek.jp/nakao/research/nyield/nyield.htm
NEA-1552/14, included references:
[1] Nakao N., et al.:
Development of a quasi-monoenergetic neutron
field using Li-7(p,n)Be-7 reaction in the 70-210 MeV energy range
at RIKEN, Nucl. Instr. and Meth., A420 pp218-231 (1999)
NEA-1552/15, bibliography:
SINBAD-PSI-P590MEV
==================
Background references:
[1] Georgia Tech MCNPX Benchmarking Homepage: http://www-rsicc.ornl.gov/pending_benchmarks/GTECH_ACCELERATOR/index.html
[3] Tuli J.:
"Nuclear Wallet Cards," National Nuclear Data Center, Brookhaven National Laboratory, July 1990.
[4] Leo W.:
"Techniques for Nuclear and Particle Physics Experiments: a How-To Approach," Berlin ; New York : Springer, 1994.
[5] Chadwick M.B., Young P.G., Chiba S., Frankle S.C., Hale G.M., Hughes H.G., Koning A.J., Little R.C., MacFarlane R.E., Prael R.E. and Waters L.S.:
"Cross Section Evaluations to 150 MeV for Accelerator-Driven Systems and Implementation in MCNPX," Nuclear Science and Engineering, vol. 131, pp. 293, March 1999.
[6] Cecil R.A., Anderson B.D. and Mady R.:
"Nuclear Instruments and Methods" vol. 161, pp. 439, 1979.
[7] Filges D., Cloth P., Neef R.D. and Sterzenbach G.:
Contribution to Spallation Source Meeting, Bad Konigstein, March 18-20, 1980.
NEA-1552/15, included references:
[2] Cierjacks S., Raupp F., Howe S.D., Hino Y., Swinhoe M.T., Rainbow M.T. and
Buth L.: High Energy Particle Spectra from Spallation Targets, Proceedings of
the 5th Meeting of the International Collaboration on Advanced Neutron Sources,
Julich, June 22-26, 1981 (pp 215-240 Jul-Conf-45)
NEA-1552/16, included references:
- Yoshimi KASUGAI et al.:
Measurement of Radioactivity Induced by GeV-Protons and Spallation Neutrons
using AGS Accelerator, JAERI-Research 2003-034 (January 2004)
NEA-1552/19, bibliography:
SINBAD-TEPC-FLUKA
=================
Background references:
[1] Mitaroff, A. and Silari, M.:
The CERN-EU High-Energy Reference Field (CERF) Facility for Dosimetry at Commercial Flight Altitudes and in Space, Rad. Prot. Dosim. Vol.102, No. 1. pp.7-22, (2002).
[2] Far West Techn. Inc.:
Environmental radiation monitor with 5 inches tissue equivalent proportional counter, Operations and repair manual, December, (2000).
[3] Fasso, A., Ferrari, A., Ranft, J., Sala, P.R.:
FLUKA: Status and Prospective for Hadronic Applications Proc. of the MonteCarlo 2000 Conference, Lisbon, October 23-26 2000, Springer-Verlag Berlin, p. 955-960, (2001).
NEA-1552/19, included references:
[4] S. Rollet, P. Beck, A. Ferrari, M. Pelliccioni, M. Autischer:
Dosimetric Considerations on TEPC FLUKA-Simulation and Measurements, Rad. Prot.
Dosim., Vol. 110, Nos 1-4, pp. 833-837 (2004)
[5] P. Beck, A. Ferrari, M.Pelliccioni, S. Rollet and R. Villari:
FLUKA Simulation of TEPC Response to Cosmic Radiation
NEA-1552/23, bibliography:
SINBAD-KENS-P500MeV
===================
Background references:
Shielding Experiment with Activation Detector and Imaging Plate:
[6] Q. Wang, K. Masumoto, A. Toyoda, N. Nakao, M. Kawai and T. Shibata: 'KENS Shielding Experiment (2) - Measurement of the Neutron Spatial Distribution inside and outside of a Concrete Shield using an Activation Foil and an Imaging Plate Technique', Proc. The 2ns Itrs International Symposium on Radiation Safety and Detection Technology (ISORD-2), Tohoku University, Sendai, JAPAN, July 24-25, (2003); J. Nucl. Sci. Technol. Suppl.4, p.26(2004)
Shielding Experiment 2003 Detail Report (Japanese):
[7] H. Yashima and N. Nakao:
'Deta Analysis for Neutron Reaction Rates of Activation Detectors in KENS Shielding Experiment - Experiment on January 2003-', KEK Internal 2003-10 (Feb. 2004).
NEA-1552/23, included references:
[1] [PPT Presentation] N. Nakao et al.:
Arrangement of high-energy neutron irradiation field and shielding experiment
using 4 m concrete at KENS", Proc. 10th Int. Conf. On Radation Shielding
(ICRS10)
Madeira, Portugal, May 9-14, 2004; Radiat. Prot. Dosim. Vol.116, No.1-4,
pp553-557 (2005).
[2] N. Nakao et al.:
KENS Shielding Experiment (1) - Measurement of Neutron Attenuation through 4m
Concrete Shield Using a High Energy Neutron Irradiation Room
Proc. 2nd iTRS Int. Symposium on Radiation Safety and Detection Technology
(ISORD-2), Tohoku University, Sendai, JAPAN, July 24-25, (2003); J. Nucl. Sci.
Technol. Suppl.4, p.22 (2004)
NEA-1552/24, bibliography:
SINBAD-CERF-BSS
===============
Background reference:
[3] S. Agosteo, C. Birattari, E. Dimovasili, A. Foglio Para, M. Silari, L.
Ulrici and H. Vincke:
Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and
lead targets in the angular range 30-135 degree
Nuclear Instruments and Methods B 229, 24-34, 2005.
NEA-1552/24, included references:
[1] A. Mitaroff and M. Silari:
The CERN-EU high-energy Reference Field (CERF)
facility for dosimetry at commercial flight altitudes and in space
Radiation Protection Dosimetry 102, 7-22, 2002.
[2] S. Agosteo, E. Dimovasili, A. Fasso and M. Silari:
The response of a Bonner Sphere Spectrometer to charged hadrons
Radiation Protection Dosimetry 110, 161-168, 2004.
NEA-1552/26, bibliography:
SINBAD-CERF-RES.DOSE
====================
Background references:
[1] A. Fasso', A. Ferrari, J. Ranft and P.R. Sala:
" FLUKA: a multi-particle transport code", CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773
[2] A. Fasso', A. Ferrari, S. Roesler, P.R. Sala, G. Battistoni, F. Cerutti, E. Gadioli, M.V. Garzelli, F. Ballarini, A. Ottolenghi, A. Empl and J. Ranft :
"The physics models of FLUKA: status and recent developments", Computing in High Energy and Nuclear Physics 2003 Conference (CHEP2003), La Jolla, CA, USA, March 24-28, 2003, (paper MOMT005), eConf C0303241 (2003), arXiv:hep-ph/0306267
[4] Mitaroff, A. and Silari, M.:
The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space. Radiat. Prot. Dosim. 102, 7-22 (2002).
[5] M. Pelliccioni:
"Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code", Radiation Protection Dosimetry 88 (2000) 279-297
NEA-1552/26, included references:
- M.Brugger, H.Khater, S.Mayer, A.Prinz, S.Roesler, L.Ulrici and H.Vincke:
"Benchmark studies of induced radioactivity produced in LHC materials, Part II:
Remanent dose rates", Radiation Protection Dosimetry 116 (2005) 12-15
NEA-1552/27, bibliography:
SINBAD-CERF-RADIONUC
====================
Background references:
[1] A. Fasso', A. Ferrari, J. Ranft and P.R. Sala:
"FLUKA: a multi-particle transport code", CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773
[2] A. Fasso', A. Ferrari, S. Roesler, P.R. Sala, G. Battistoni, F. Cerutti, E. Gadioli, M.V. Garzelli, F. Ballarini, A. Ottolenghi, A. Empl and J. Ranft :
"The physics models of FLUKA: status and recent developments", Computing in High Energy and Nuclear Physics 2003 Conference (CHEP2003), La Jolla, CA, USA, March 24-28, 2003, (paper MOMT005), eConf C0303241 (2003), arXiv:hep-ph/0306267
[4] A. Mitaroff and M. Silari:
"The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space", Radiat. Prot. Dosim. 102, 7-22 (2002)
NEA-1552/27, included references:
[3] M. Brugger, A. Ferrari, S. Roesler and L. Ulrici:
"Validation of the FLUKA Monte Carlo code for predicting induced radioactivity
at high-energy accelerators", Proceedings of the 7th International Conference
on Accelerator Applications, Venice, Italy (2005). Nuclear Instruments and
Methods A 562, 814-818 (2006).
[5] M. Brugger, H. Khater, S. Mayer, A. Prinz, S. Roesler, L. Ulrici and
H. Vincke:
"Benchmark studies of induced radioactivity produced in LHC materials, Part I:
Specific Activities", Radiation Protection Dosimetry 116 (2005)
NEA-1552/28, bibliography:
SINBAD-CERF-120GEV/C
====================
Background reference:
[4] N. Nakao, S. Taniguchi. S. Roesler, M. Brugger, M. Hagiwara, H. Vincke, H. Khater, A.A. Prinz, S.H. Rokni and K. Kosako:
"Measurement and calculation of high-energy neutron spectra behind shielding at the CERF 120 GeV/c hadron beam facility", Nucl. Instrum. Methods Phys. Res., B 266, 1 (2008) 93-106.
NEA-1552/28, included references:
[1] N. Nakao, S. Taniguchi, S.H. Rokni, S. Roesler, M. Brugger, M. Hagiwara, H.
Vincke, H. Khater and A.A. Prinz:
"Measurement of Neutron Energy Spectra behind Shielding of a 120 GeV/c Hadron
Beam Facility, CERF", SLAC RADIATION PHYSICS NOTE, RP-06-06 (2006)
[2] N. Nakao, S. Taniguchi, S.H. Rokni, S. Roesler, M. Brugger, M. Hagiwara, H.
Vincke, H. Khater and A.A. Prinz:
"Measurement of Neutron Energy Spectra behind Shielding of a 120 GeV/c Hadron
Beam Facility", Proc. of International Conference on Accelerator Application
(AccApp05), Venice, Italy, Aug.29-Sep.1 (2005);also SLAC-PUB-11569(2005)
[3] N. Nakao:
"MARS15 Monte Carlo Simulation for CERF Shielding Experiment", SLAC RADIATION
PHYSICS NOTE, RP-06-07, March 30, 2006.
NEA-1552/30, bibliography:
SINBAD-30/52MEV-P
=================
Background references:
[1] Nakamura T., Fujii M., and Shin K., "Neutron Production from Thick Targets of Carbon, Iron, Copper, and Lead by 30- and 52-MeV Protons," Nuclear Science and Engineering, Vol. 83, 444-458 (1983).
[2] Nakamura T., Yoshida M., and Shin K., "Spectral Measurements of Neutrons and Photons from Thick Targets of C, Fe, Cu, and Pb by 52 MeV Protons," Nuclear Instruments and Methods, 151, 493-503 (1978).
[3] Shin K., Uwamino Y., and Hyodo T., Nucl. Technol., 53, 78 (1981).
[4] O'Dell R. "Specification and Atom Densities of Selected Materials" in Criticality Calculations with MCNP: A Primer, LA-12827-M, August 1994.
[5] H. Grady Hughes, Richard E. Prael, and Robert C. Little.: "MCNPX - The LAHET/MCNP Code Merger." Los Alamos National Laboratory Memorandum XTM-RN(U) 97-012, April 22, 1997.
[6] M.B. Chadwick, P.G. Young, S. Chiba, S.C. Frankle, G.M. Hale, H.G. Hughes, A.J. Koning, R.C. Little, R.E. MacFarlane, R.E. Prael and L.S. Waters. Cross Section Evaluations to 150 MeV for Accelerator-driven Systems and Implementation in MCNPX. Nucl. Sci. and Eng., 131(3), p. 293, March 1999.
NEA-1552/31, bibliography:
SINBAD-AVF-75MEV-P
==================
Background reference:
[1] Shin K., Ishii Y., Uwamino Y., Sakai H. and Numata S.: "Transmission of Medium Energy Neutrons Through Concrete Shields," Radiation Protection Dosimetry, Vol. 37, No. 3, 175-178 (1991).
[2] K. Shin et al., Nucl. Technol., 53, 78 (1981).
[3] Knolls Atomic Power Laboratory, Chart of the Nuclides, 12th Edition (1977)
[4] H. Grady Hughes, Richard E. Prael, and Robert C. Little.: "MCNPX - The LAHET/MCNP Code Merger." Los Alamos National Laboratory Memorandum XTM-RN(U) 97-012, April 22, 1997.
[5] M.B. Chadwick, P.G. Young, S. Chiba, S.C. Frankle, G.M. Hale, H.G. Hughes, A.J. Koning, R.C. Little, R.E. MacFarlane, R.E. Prael, and L.S. Waters. Cross Section Evaluations to 150 MeV for Accelerator-driven Systems and Implementation in MCNPX. Nucl. Sci. and Eng., 131(3):293, March 1999.
[6] Georgia Tech MCNPX Benchmarkng Homepage: http://epicws.epm.ornl.gov/pending_benchmarks/GTECH_ACCELERATOR/index.html
NEA-1552/32, included references:
[1] G.R. Stevenson, A. Fasso', J. Sandberg, A. Regelbrugge, A. Bonifas, A.
Muller, M. Nielsen:
"Measurements of the dose and hadron yield from copper targets in 200 GeV/c and
400 GeV/c extracted proton beams. An Atlas of the Results obtained", EUROPEAN
ORGANIZATION FOR NUCLEAR RESEARCH, TIS-RP/112 (1983)
[2] G.R. Stevenson, D. M. Squier, G. S. Levine:
"Measurements of the angular dependence of dose and hadron yield from targets
in 8 GeV and 24 GeV/c extracted proton beams, RHEL/MR 6 (1983)
NEA-1552/33, bibliography:
SINBAD-IHEAS-BENCHM
===================
Background reference:
[1] Nakamura T. et al.: "Annotated References on Neutron and Photon Production from Thick Targets Bombarded by Charged Particles," Atomic Data and Nuclear Data Tables, 32, 471-501 (1985)
NEA-1552/33, included references:
- Hirayama H. et al.:
Annotated References of Shielding Experiment and Calculation of High Energy
Particles, KEK report 90-18 (1990)
- Hirayama H. et al.:
Accelerator Shielding Benchmark Problems, KEK report 92-17 (1993)
- H. Nakashima et al. :
Benchmark Problems for Intermediate and High Energy Accelerator
Shielding, JAERI-Data/Code 94-012 (September 1994)
NEA-1552/34, bibliography:
SINBAD-52
==========
Background references:
[3] K. Shin et al., Nucl. Technol., 53, 78 (1981).
[4] K. Hayashi, et al.: "Accelerator Shielding Benchmark Analysis and
Future Items to be Solved", SATIF Proceedings of the Specialists
Meeting, Arlington, USA, 28-29 April 1994, OECD 1995
[5] H. Nakashima, et al.: "Accelerator Shielding Benchmark Experiment
Analyses", SATIF-2 Proceedings of the Specialists' Meeting, CERN,
Geneva, Switzerland, 12-13 Oct. 1995, OECD 1996
[6] T. Nakamura and T. Kosako, Nucl. Sci. Eng., 77, 168 (1981)
NEA-1552/34, included references:
[1] Shin K., Uwamino Y., Yoshida M., Hyodo T. and Nakamura T.: Penetration of
Secondary Neutrons and Photons from a Graphite Assembly Exposed to 52-MeV
Protons, Nucl. Sci. Eng., 71, 294-300 (1979).
[2] Uwamino Y., Nakamura T. and Shin K.: Penetration Through Shielding
Materials of Secondary Neutrons and Photons Generated by 52-MeV Protons, Nucl.
Sci. Eng., 80, 360-369 (1982).
[8] H. Nakashima et al., Benchmark Problems for Intermediate and High Energy
Accelerator Shielding, JAERI 94-012 (Sept.1994).
[9] P. Ortego, Evaluation of Accelerator Experiments Performed at Tokyo
University with 52 MeV Protons (Nov. 2009).
NEA-1552/35, bibliography:
SINBAD-HIMAC
============
Background references:
[6] N. Nakao et al.:
Measurements of response function of organic liquid scintillator for neutron energy range up to 135 MeV, Nuclear Instruments and Methods in Physics Research, Vol. A-362, p. 454 (1995)
NEA-1552/35, included references:
[1] T. Kurosawa et al.:
Measurements of Secondary Neutrons Produced from Thick Targets Bombarded by
High Energy Helium and Carbon Ions, Nuclear Science and Eng. vol. 132, p. 30
(1999)
[2] T. Kurosawa et al.:
Spectral measurements of neutrons, protons, deuterons and tritons produced by
100 MeV/nucleon He bombardment, Nuclear Instruments and Methods in Physics
Research, Vol. A 430, p. 400 (1999)
[3] T. Kurosawa et al.:
Measurements of Secondary Neutrons Produced from Thick Target Bombarded by High
Energy Neon Ions, Journal of Nuclear Science and Technology, vol. 36, p.41
(1999)
[4] T. Kurosawa et al.:
Neutrons yields from thick C, Al, Cu and Pb targets bombarded by 400
MeV/nucleon Ar, Fe, Xe and 800 MeV/nucleon Si ions, Physical Review C, vol. 62,
p. 044615-1 (2000)
[5] R.A. Cecil et al.:
Improved predictions of neutron detection efficiency for hydrocarbon
scintillators from 1 MeV to about 300 MeV, Nuclear Instrum. and Methods, Vol.
161, p. 439 (1979).
[7] T. Kurosawa, T. Nakamura and L. Heilbronn:
Experimental Data of Neutron Yields from Thick Targets Bombarded by 100 to 800
MeV/nucleon Heavy Ions.
[8] P. Ortego:
Benchmarking of MCNPX with the Experimental Measurements of High-Energy Helium
Ions in HIMAC Facility, also in Rad. Prot. Dosimetry, 116(1-4), Pp.43-49 (2005)
[9] P. Ortego, Evaluation of HIMAC Experiments with Different Projectiles and
Targets from 100 to 800MeV/Nucleon (Jan. 2010).
NEA-1552/36, bibliography:
SINBAD-HIMAC800-CONC
====================
Background references:
[2] M. Sasaki, N. Nakao, T. Nunomiya, T. Nakamura, T. Shibata, A. Fukumura:
Response Function Measurements of the Self-TOF Neutron Detector for Neutrons up to 800 MeV,
J. Nucl.Sci. Technol., Vol 38, No.1, 8(2001).
[3] N. Nakao, T. Nakamura, M. Baba, Y. Uwamino, N. Nakanishi, H. Nakashima and S. Tanaka:
Nucl. Instrum. and Methods, A362, 454(1995).
[4] M. Sasaki, N. Nakao, T. Nunomiya, T. Nakamura, T. Shibata, A. Fukumura:
Measurements of the response functions of the NE213 organic liquid scintillator to neutrons up to 800 MeV, Nucl. Instrum. and Methods, A480, 188(2002).
[5] E. Kim, T. Nakamura and A. Konno:
Measurements Neutrons Spallation Cross Sections of C-12 and Bi-209 in the 20 to 150 MeV Energy Range, Nucl. Sci. Eng. 129, 209(1998).
[6] Evauated Nuclear Data File, ENDF/B-VI, National Neutron Cross Section Center, Brookhaven National Laboratory (1990).
[7] T. Fukahori:
Proceedings of the 1990 Symposium on Nuclear Data, Tokai, Japan, JAERI-M 91-032, 106(1991).
[8] Y. Uno, Y. Uwamino, T.S. Soewarsono and T. Nakamura:
Measurements of the Neutron Activation Cross Sections of C-12, Si-30, Ti-47, Ti-48, Cr-52, Co-59 and Ni-58 between 15 and 40 MeV", Nucl. Sci. Eng. 122, 247(1996).
[9] R.E. Prael, H. Lichtenstein:
User Guide to LCS: The LAHET Code System", MS B226, LANL(1989).
[10] T. Kurosawa, N. Nakao, T. Nakamura, Y. Uwamino, T. Shibata, A. Fukumura and K. Murakami:
Measurements of Secondary Neutrons Produced from Thick Targets Bombarded by High-Energy Neon Ions,
Journal of Nucl. Sci. and Tech., 36, 41(1999).
[11] H.G. Hughes, et al.:
MCNPX for Neutron-Proton Transport, Proceedings of the Inter. Conf. on Mathematics and Computation, Reactor Physics & Environmental Analysis in Nuclear applications, American Nucl. Society, Madrid Spain, (1999).
[12] M.B. Chadwick, L.J. Cox, P.G. Young and A.S. Meigooni
Nucl. Sci. Eng. 123, 17(1996).
NEA-1552/36, included references:
[1] M. Sasaki, E. Kim, T. Nunomiya, T. Nakamura, N. Nakao, T. Shibata, Y.
Uwamino, S. Ito and A. Fukumura:
Measurements of high energy neutrons penetrated through concrete shields using
the self-TOF, NE213 and activation detectors", Nuclear Science and Engineering
Vol.141 Number 2 140-153(2002)
[13] P. Ortego, Evaluation of HIMAC Accelerator Experiments with 400
MeV/Nukleon Carbon Ions (Dec. 2009)
NEA-1552/37, bibliography:
SINBAD-HIMAC800-FE
==================
Background references:
[2] M. Sasaki, N. Nakao,T. Nunomiya, T. Nakamura, T. Shibata, A. Fukumura:
Response Function Measurements of the Self-TOF Neutron Detector for Neutrons up to 800 MeV" J. Nucl.Sci. Technol., Vol 38, No.1, 8(2001).
[3] N. Nakao,T. Nakamura, M. Baba, Y. Uwamino, N. Nakanishi, H. Nakashima and S. Tanaka:
Nucl.Instrum. and Methods, A362, 454(1995).
[4] M. Sasaki, N. Nakao,T. Nunomiya, T. Nakamura, T. Shibata, A. Fukumura:
Measurements of the response functions of the NE213 organic liquid scintillator to neutrons up to 800 MeV
Nucl.Instrum. and Methods, A480, 188(2002).
[5] T. Kurosawa, N. Nakao,T. Nakamura, Y. Uwamino,T. Shibata, A. Fukumura and K. Murakami:
Measurements of Secondary Neutrons Produced from Thick Targets Bombarded by High-Energy Helium and Carbon Ions
Nucl. Sci. Eng. 132, 30(1999).
[6] H.G. Hughes, et al.:
MCNPX for Neutron-Proton Transport,
Proceedings of the Inter. Conf. on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear applications, American Nucl. Society, Madrid spain,(September 1999).
[7] M.B. Chadwick, L.J. Cox, P.G. Young and A.S. Meigooni:
Nucl. Sci. Eng. 123, 17(1996)
NEA-1552/37, included references:
[1] M. Sasaki, N. Nakao, T. Nunomiya, T. Nakamura, A. Fukumura and M. Takada:
Measurements of high energy neutrons penetrated through iron shields using the
self-TOF detector and an NE213 organic liquid scintillator,
Nuclear Instruments and Methods B 196 113-124(2002)
[8] P. Ortego, Evaluation of HIMAC Accelerator Experiments with 400 MeV/Nukleon
Carbon Ions and Iron Shielding (Jan. 2010)
NEA-1552/38, bibliography:
SINBAD-ISIS800
==============
Background references:
[2] 'Evaluated Nuclear Data File', ENDF/B-VI, National Neutron Cross Section Center, Brookhaven National Laboratory (1990).
[3] M. Blann, Code ALICE/89, Private Communication (1989).
[4] Y. Uwamino, T. Nakamura, A. Hara, 'Nucl. Instr. Meth.' A239 (1985) 299.
[5] G. R. Stevenson, K. L. Liu and R. H. Thomas, 'Health Phys.' 43 (1982) 13.
[6] S. Ban, H. Hirayama, K. Kondo, S. Miura, K. Hozumi, M. Taino, A. Yamamoto, H. Hirabayashi and K. Katoh, 'Nucl. Instr. Meth.' 174 (1980) 271.
[7] J. S. Bull, J. B. Donahue and R. L. Burman, 'Proceeding of the fourth workshop on simulating accelerator radiation environments', Knoxville, Tennessee, (September 1998) 201.
[8] A. Carne, G. H. Eaton, F. Atchison, T. A. Broome, D. J. Clarke, B. R. Diplock, B. H. Poulten and K. H. Roberts, 'SNS Target Station Safety Assessment (Support Document to SNS Target Station Hazard Survey SNS/ENV/N1/83 Rev.1)'. SNSPC/P6/82,(1983).
[9] M. Kinno and S. Yokosuka, Fujita, Co., Japan, Private Communication (1999).
[10] E. Kim, T. Nakamura and A. Konno, 'Nucl. Sci. Eng.' 129 (1998) 209.
[11] Y. Uno, Y. Uwamino, T. S. Soewarsono and T. Nakamura, 'Nucl. Sci. Eng.' 122 (1996) 247.
[12] 'Evaluated Nuclear Data File', ENDF/B-VI, National Neutron Cross Section Center, Brookhaven National Laboratory (1990).
[13] T. Fukahori, Proceeding of the 1990 Symposium on Nuclear Data, Tokai, Japan, JAERI-M 91-032 (1991) 106.
[14] H. G. Hughes, et. al., 'MCNPX for Neutron-Proton Transport', Proceedings of the International Conference on Mathematics and Computation, Reactor Physics & Environmental Analysis in Nuclear Applications, American Nuclear Society, Madrid Spain, (September 1999).
[15] M. B. Chadwick, L. J. Cox, P. G. Young and A. S. Meigooni, 'Nucl. Sci. Eng.' 123 (1996) 17.
[16] International Commission on Radiological Protection, ICRP Publication 51, (1987).
[17] S. Ban, H. Hirayama and K. Katoh, "Nucl. Instr. Meth." 184 (1981) 409
[19] N. Nakao, T. Nunomiya, H. Iwase and T. Nakamura: MARS14 deep-Penetration calculation for the ISIS Target Station Shielding", Nucl. Instr. and Meth. A 530 (2004) pp379-390.
NEA-1552/38, included references:
[1] T. Nunomiya, N. Nakao, P. Wright, T. Nakamura, E. Kim, T. Kurosawa, S.
Taniguchi, M. Sasaki, H. Iwase, T. Shibata, Y. Uwamino, S. Ito, and David R.
Perry:
Experimental Data of Deep-Penetration Neutrons through a Concrete and Iron
Shield at the ISIS Spallation Neutron Source Facility using an 800-MeV Proton
Beam, ISIS Facility, Rutherford Appleton Laboratory (RAL), United Kingdom
(1998).
[18] T. Nunomiya, N. Nakao, H. Iwase and T. Nakamura:
Deep-Penetration Calculation for the ISIS Target Station Shielding Using the
MARS Monte Carlo Code", KEK Report 2002-12 (Mar. 2003).
[20] P. Ortego, Evaluation of ISIS Accelerator Experiments with 800 MeV Protons
(Dec. 2009)
NEA-1552/39, included references:
[1] L. Heilbronn et al.
"Neutron Yields from 155 MeV/nucleon Carbon and Helium
Stopping in Aluminum", Nuclear Science & Engineering, vol. 132, p. 1 (1999)
[2] R.A. Cecil et al.
"Improved predictions of neutron detection efficiency
for hydrocarbon scintillators from 1 MeV to about 300 MeV", Nuclear
Instrumentation and Methods in Phys. Res. vol. 161, p. 439 (1979).
[3] P. Ortego, Evaluation of Accelerator Experiments Performed at Michigan
State University with 155 MeV/Nucleon He-4 and C-12 Ions (May 2009).