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Preface

The NEA Radioactive Waste Management Committee (RWMC), established in 1975, is an
international committee of senior experts from government and industry familiar with the
scientific, policy and regulatory issues in radioactive waste management. A primary
objective of the RWMC is to improve the general level of understanding of waste
management issues and strategies, particularly with regard to waste disposal, and to
disseminate relevant information. Current NEA programmes under the RWMC focus on
methodologies for the long-term safety assessment of waste disposal, and on site evaluation
and design of experiments for radioactive waste disposal.

The Probabilistic System Assessment Group (PSAG) was established by the RWMC in
January 1985 (originally under a different name) to help co-ordinate the development in
OECD member countries of probabilistic safety assessment computer codes to be used in
performance assessment of radioactive waste disposal facilities. = The PSAG met
approximately twice per year between its founding and its final meeting in June 1994. A key
part of the Group’s activities was the conduct of code intercomparison exercises aimed at
building confidence in the correct operation of probabilistic assessment codes being prepared
for applications in national programmes. Such exercises stimulated the thinking process and
helped pave the way for basic developments, improvements and advancements in the
application of probabilistic methods to assessment of waste disposal systems. In addition, the
PSAG discussed many topical issues of relevance to PSA code development and to the whole
question of the treatment of uncertainty in performance assessment. The PSAG reported to,
and had its work reviewed by, the NEA Performance Assessment Advisory Group (PAAG).

The PSAG has been assisted by the NEA Data Bank, which undertakes the collection, testing,
and dissemination of computer programs and scientific data within the NEA’s fields of
interest.
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1. Introduction

The User Group for SYVAC-like Codes was set up by the Nuclear Energy Agency (NEA) in
1985, following the coming together of representatives of several national groups who were
using the Canadian computer program SYVAC (SYstems Variability Assessment Code), or
who were interested in applying a similar methodology. In setting up the Group under NEA
sponsorship, terms of reference were agreed by the Radioactive Waste Management
Committee (RWMC) of the NEA that included exchange of codes, information and
experience, conducting mutual peer reviews, contributing to code justification by code
comparison or other exercises, and discussing technical issues identified as being of concern
for the further development of the probabilistic system assessment approach.

It soon became clear that there was interest within many of the OECD Member countries in
developing probabilistic codes for the assessment of radioactive waste disposal concepts, and
that such code development would not be based, in many cases, directly on SYVAC. Thus,
at the end of 1985, the name of the Group was changed to the Probabilistic System
Assessment Code (PSAC) User Group, to reflect the wide range of probabilistic codes being
developed within an expanding membership. At the end of 1990, the name was changed
again, to the Probabilistic System Assessment Group (PSAG), to reflect a broadening in the
scope of the Group’s activities.

Since it began, the PSAC/PSAG met approximately twice per year until 1993, with typically
15 to 30 people attending each meeting, representing 20 or more groups from at least 10
countries. The Group was assisted by a Secretariat provided by the NEA, and the NEA Data
Bank gave assistance in the exchange of computer codes and the analysis of some of the
exercises. The final meeting of the Group took place in June 1994.

In keeping with the aims of the Group, exchange of information and experience was
accomplished through presentation at the meetings of progress reports by members, and
reports on related NEA-sponsored and other international activities of relevance. Detailed
exploration of important technical issues was carried out by holding Topical Sessions at most
PSAG meetings. These sessions were contributed to by PSAG members and by invited
speakers from outside the Group. A major part of the Group’s time, however, was devoted to
conducting a series of Probabilistic System Assessment COde INtercomparison exercises,
known as PSACOIN exercises. These were designed to fulfil the Group’s purpose of



contributing to justification of the computer codes that the participating national groups were
preparing for use in safety assessments in their own national programmes. They were also
important in ensuring that the Group’s discussions were firmly grounded in practical
application of the ideas being discussed.

Five reports documenting the results of the PSACOIN exercises have been published by the
OECD. Records of the PSAG meetings, and collections of papers presented at Topical
Sessions, have been distributed to Group members, and to other related NEA groups,
especially the Performance Assessment Advisory Group (PAAG) and the Radioactive Waste
Management Committee.

In 1989, a paper describing the objectives, achievements and the programme of activities of
the PSAC/PSAG was invited by the NEA for presentation to the OECD/IAEA/CEC
Conference in Paris on Safety Assessment of Radioactive Waste Repositories [Thompson et
al., 1990]. This paper was prepared by several members of the Group and it, together with a
booklet published in 1991 by the OECD to explain the background and progress of the PSAG
[NEA, 1991], provides the basis of much of the present report. A further paper focusing on
the PSACOIN exercises and their results is also available [Galson et al., 1991].

The winding up of PSAG activities reflects an increasing confidence in the practical
application of PSA methodologies in OECD Member countries. For example, PSA has been
used as an integral part of repository development programmes and/or actual licensing in
Belgium [Marivoet, 1992; NIRAS/ONDRAF, 1994], Canada [Goodwin et al., 1994], the
United Kingdom [Nirex, 1995a], and the United States [US Department of Energy, 1996].

The present report has been prepared to provide a record and summary of the achievements of
the PSAG over its ten years of operation. In Chapter 2, a brief technical account of the
concepts and methodology of probabilistic system assessment (PSA) is presented. A
summary of the development and application of PSA around the world is given in Chapter 3.
Some of the important technical issues addressed by the PSAG in its discussions and Topical
Sessions are summarised in Chapter 4. Chapter 5 is devoted to the PSACOIN exercises, and
summarises the content of each exercise and the conclusions reached. A summary of the
achievements of the PSAG is given in Chapter 6. Chapter 7 presents an outlook on some
current issues in PSA, and provides recommendations for possible future work by the
international community.



2. What is PSA?

In this Report, the letters PSA are taken to stand for Probabilistic System Assessment,
although the acronym is sometimes taken to represent Probabilistic Safety Assessment. A
probabilistic assessment or analysis of the safety of a system could in principle use any
method for evaluating the performance in which account is taken of the uncertainty that
exists as to the way the system behaves, and in which that uncertainty is expressed in
probabilistic terms. In the field of radioactive waste disposal, however, the term has come to
be used for a particular computational approach to taking uncertainty into account. This
approach, usually called the Monte Carlo method, involves repeated application of
mathematical models, with some or all of the parameters of the models being given randomly
selected values for each repetition.

Uncertainty enters into the long-term prediction of the performance of waste disposal systems
for several reasons, including:

e The limited characterisation that can be achieved of the present state of the facility and its
surroundings.

o The difficulty of extrapolating observations in time and space.

e The unpredictability of future environmental conditions and natural events that will affect
system performance.

e The unpredictability of future behaviour of human beings, both as potential recipients of
risks and as originators of influences on the behaviour of the system.

e Incomplete knowledge of the physical and chemical processes that combine to produce
the overall behaviour of the system.

e The existence of alternative defensible models for the behaviour of parts of the system.

It is accepted that the sources of uncertainty identified above will never be completely
removed and that, because of these uncertainties, any predictive modelling of system
behaviour must have uncertain inputs (choice of models and assumptions, choice of data
values) and, consequently, uncertain outputs (the measures of system performance). Thus,



elaborate approaches have been developed for identifying and quantifying the uncertainties in
assessing the performance of waste repositories. PSA is one of these approaches and provides
a means to gather and organise evidence for a judgement on the acceptability of the
performance of the system in question, in view of the remaining uncertainties.

The Monte Carlo method is applied in several other fields. For some applications, for
example the simulation of neutron fluxes in nuclear reactor shielding structures, the aim is to
determine average patterns of behaviour in a system in which a very large number of events
or processes occur, with random variation from one occurrence to another. In such cases, a
Monte Carlo simulation will involve a randomly selected set of calculated cases that
represents a small selection of the actual ensemble of events being modelled. In application
of PSA to estimating long-term risks associated with waste disposal, the situation is rather
different. There will only be one future course of the events and processes that constitute the
performance of the system; the ‘average’ consequence is merely an agreed basis for assessing
the future behaviour in the presence of uncertainty. Physically, no population of disposal
systems as an ensemble of equally plausible worlds exist. However, the PSA for a disposal
system assumes many (actually infinite) likely future evolutionary paths as the actual system
evolution cannot be specified a priori. The various likely future evolutions follow specified
probabilistic constraints. Therefore, the PSA should be thought of as providing a formal,
explicit, and traceable procedure for considering uncertainties about the system and its
parameters in developing performance estimates [cf. Watson, 1994]. In summary, a PSA
cannot prove objectively how safe a radioactive waste disposal system is, but rather provides
a coherent framework for incorporating expert judgement on safety relevant aspects.

A PSA necessarily includes much more than the development of equations and codes and the
running of calculations. However, because the work of the PSAG focused essentially on the
development, discussion and trial application of the quantitative, code-related aspects of the
PSA methodology, the remainder of this chapter focuses on the mathematical aspects of
Monte Carlo PSA.

2.1 The Mathematical Concepts in PSA

The mathematical principles of Monte Carlo PSA are easy to state. A system is considered
whose behaviour, it is assumed, can be simulated by applying mathematical models. For an
underground disposal facility for radioactive waste, the system may include the waste itself,
the engineered components, such as waste packages and repository structures, and the local
natural environment. The mathematical models allow the calculation of one or more
measures of the performance of the system, such as the radiological dose rate at any time to
an individual with given habits. Other performance measures could be the health risk
corresponding to exposure to the radiological dose, the total release of activity to a specified
physical boundary up to a given time, or the fraction of activity contained within a particular
part of the system. Monte Carlo techniques can also be used to evaluate subsystem
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performance, and some of the work within the PSAG specifically focused on subsystem
calculations.

For the purpose of further discussion here, it will suffice to consider a single measure of
performance, g, written as

gx1, ...y XK) - (N

This function may be quite time-consuming to compute numerically. The performance
measure has here been shown as a function of several parameters, x;j, which may relate to
measurable properties of system components, boundary conditions applied to the modelled
region, and so on. Uncertainty about the system is expressed in terms of uncertainty about
the values of the parameters, x;. In practice, the value of a performance measure will often be
calculated as a function of time, and possibly for several locations, exposure pathways, etc.
This functional dependence is not shown in the notation here.

Note that some forms of uncertainty may not readily fit into the framework just described.
Some mathematical models incorporate stochastic elements, whereas in expression (1) above,
the performance measure is taken to be a deterministic function of its parameters. It is also
possible that several defensible functional forms for g are available, constituting a further
source of uncertainty about the outcome. The function g and the associated parameters, x;,
may be space and time dependent or they may depend upon other factors such as particular
radionuclides under consideration. A specific example of time dependence of x; is found in
the PSA application by Her Majesty’s Inspectorate of Pollution (HMIP)! in the UK, where
models and associated parameters are dependent upon time-varying climatic conditions
[Sumerling (Ed.), 1992].

The description used in probability theory to express uncertainty about a set of quantities,
xy, ..., X (alternatively written as the vector x), is the joint probability density function
(PDF), fix). The probability that the true value of x| lies between X} and X;+dX,, and that
the value of x, lies between X, and X>+dX», and so on, is f{X) dX; dX; ... dX. In the case
that all the parameters are independent (i.e., that probabilistic statements about the value of
one x; do not depend on the values of any of the other parameters), the joint PDF becomes a
simple product of independent PDFs, fj(x;):

fx) = filx1) o(x2) ... falxx) - (2)

Because g depends on all the x; via a fixed function, the value of ¢ has an uncertainty that can
also be characterised by a PDF. The aim of PSA is basically to estimate the PDF of g, the
performance measure. Other equivalent ways of describing the probability distribution of g

' Since 1 April 1996, merged with the National Rivers Authority and Local Waste Regulatory Authorities to

form the Environment Agency of England & Wales.

11



can be used. A common requirement is to find the expectation value (arithmetic mean) of the
distribution, and other simple properties, such as percentiles.

The practical procedure of Monte Carlo PSA involves making many calculations of g(x),
using randomly sampled values of the parameters x;. Suppose that N sample sets are taken,
that in the n-th set the parameter x; takes the value x;("), and that the performance measure
takes the value:

q(n) = q(x(’l)) . 3)

If all of the sampled parameter sets have been selected by a procedure that makes the
expected density of sample points equal to the joint PDF f{(x), then the mean of g(x), which is
formally defined by the integral

Z] =de1---J.q(xla""xk)f(xl"”’xk)dxk > )

can be estimated from

1 N
— (n)
@==2. 4 )

that is, the simple mean of the g values calculated from the sample parameter values. Other
simple statistics, such as the variance of ¢, or percentile values for the distribution of q,
similarly have simple estimation formulae, usually closely related to the corresponding
statistics for the finite population of sample parameter-value sets and corresponding
consequence values. If the sample values x(") are selected with a different density than f(x),
then estimation formulae such as (5) must be modified (see the discussion of Importance
Sampling under ‘Statistical sampling strategies’ in Chapter 4). It should be noted as well
that, if expected values of x; are used in equation (1), the value of g is not equal to g., except
in the special case where the system output depends linearly on the parameters. Such
nonlinear dependence on parameters is the reason for adoption of Monte Carlo or similar
methods for PSA.

That probabilistic language is used to express the uncertainty in the parameter values does
not imply that the physical quantities corresponding to the parameters should be considered
as random. To avoid confusion, it is preferable to talk about uncertainty in the parameters
and in the measures of performance of the system rather than about variability in the
parameters or performance measures. From this point of view, it is perhaps unfortunate that
some PSA codes have been given names including the word ‘variability’.

The term ‘variability’ is best applied to variations in time or in space of some observable
quantity, such as a rock permeability. An approximate mathematical model of the system
may require an average over space or time of such a quantity, or make use of other statistics
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of the variation. In such a situation, if measurement is unable completely to determine the
actual variations, the variability may be considered as one of the sources of uncertainty about
the appropriate model parameters. Note that when this is the case, the degree of variability of
the underlying quantity and the corresponding uncertainty in the model parameter will have
different measures.

The random sampling process of the Monte Carlo approach is also not something that is
made fundamentally necessary by the probabilistic description of the uncertainties. The mean
value expressed by equation (4) above is simply an integral to be estimated, and systematic
rather than randomly-sampled values of the integration variables, the xj, could serve equally
well for estimating the integral. Indeed, the simple Monte Carlo procedure is often departed
from in PSA for certain purposes. For instance, it is possible to use sampling that, while still
random, is biased in various ways, to achieve improved accuracy in estimating statistics such
as mean values. Non-random, systematic patterns of parameter-value selection can also be
used in performing sensitivity analysis (that is, testing the sensitivity of the performance
measures to individual parameters or to parameter distributions).

PSA methods can be applied only to uncertainties that can be characterised in probabilistic
terms. However, similar methods can be applied even when the parameter ranges considered
do not derive from probability distributions. For instance, the application of Fuzzy Set
Theory to characterise parameter uncertainties and corresponding consequence ranges is
discussed in Chapter 4. On the other hand, some types of uncertainty that arise in assessment
modelling may be difficult to describe in probabilistic terms. An example is the uncertainty
about whether a particular process should be included within the conceptual model of a
particular system or subsystem. PSA does not always account for such uncertainties.

2.2  Features of the Models used in Waste Disposal Applications of PSA

Whether modelling of waste disposal systems is done probabilistically or not, it is important
that the construction of the mathematical models is based on a thorough analysis of all the
features, events and processes that could contribute significantly to the performance of the
system. As a result of such an analysis, as well as for practical reasons, the system is usually
broken down conceptually into subsystems. In the part of the system in which radionuclide
transport must be considered, a common breakdown is into the ‘near field’ (the repository,
including the wasteform and engineered barriers), the ‘far field’ (the geologic media
constituting the primary natural barrier to radionuclide migration from the repository to the
surface), and the biosphere (the surface and near-surface environment into which
radionuclides may be released, giving rise to potential radiological exposure of humans). An
additional subsystem is the more distant environment, whose behaviour and evolution could
influence the performance of the main system. Similarly, various kinds of human influence
on the main system could be considered in terms of separate subsystem models.
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A further way to break down the system, and hence to structure the modelling, is according to
the major pathways for radionuclide transport. Those normally considered are groundwater,
repository-generated gas, human intrusion, and natural disruptive events.

Thus, the mathematical model of the whole system may need to represent a wide variety of
physical, chemical and biological processes. In the near-field subsystem, it may include
corrosion and other waste container failure mechanisms, dissolution of the wasteform and
other materials in groundwater, decay and in-growth of radionuclides, groundwater flow
through the repository, transport of radionuclides within the repository by advection and
diffusion, sorption of radioelements onto repository materials, including repository-derived
complexants and colloids, and gas generation by metal corrosion or microbial action. Far-
field processes modelled may include flow or percolation of water and/or gas, transport of the
radionuclides by these flows and by diffusion, dissolution and transport of salt, association
and dissociation of radionuclides with colloids or organic complexants, and again the decay
and in-growth of the radionuclides. The biosphere processes that could be represented are
numerous. In addition to the transport mechanisms present in the far field, much more
complex movements of water bodies may need to be considered, along with the transport of
gases, dusts, mists, and so on, and a myriad of biological processes. In addition, the
biosphere modelling must account for the means of exposure of humans to the radioactivity
present in the environment. Models may also be required to account for the possibility of
inadvertent future human intrusion into the repository or the plume of released contaminants.
Models of human exposure and human intrusion require consideration and stylised
representation of human behaviour patterns, and how these could evolve in the distant future,
commensurate with good radiation protection practice.

The numerical implementation of the system model may likewise involve a wide variety of
methods. Many of the transport problems involve partial differential equations, whose
numerical solution may be approached by finite-difference or finite-element methods, often
with simplification to two dimensions or one dimension. Alternative discretization methods
include network models, and models of fracture systems as stochastic distributions of planes.
Some parts of the model may lend themselves to analytic solution.

In general, PSA is made more practicable if the computational models used execute very
quickly on a computer, because many runs of the models must be made. To achieve this,
simplifications are usually introduced. An extreme example is to eliminate all of the
complexity of the biosphere, and instead use simple multiplying factors that convert
radionuclide fluxes into dose rates, on the assumption of equilibrium behaviour. All
simplifications should be selected and justified by comparison with more detailed
deterministic modelling.

Typically, despite all simplifications, a PSA code remains a complex product. A modular
structure is almost invariably adopted, whether simply by decomposition into subroutines, or
by assembly of a number of semi-independent program units whose execution is managed
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serially or in parallel with the aid of the computer’s operating system. In either case, an
‘executive’ module will control the execution of specialised modules for input of the
specification of the problem, random number generation for sampling of parameter values,
repeated running of the model, statistical analysis of the outputs, and presentation of the
results. Statistical and graphical ‘post-processing’ is often carried out by completely separate
codes.

2.3 Analysis of PSA Results

The ‘raw’ output of a PSA calculation is a large amount of numerical data, consisting of a set
of output quantities calculated for each of the sample cases. The set of outputs for each
sample case may include several different quantities, such as release rates of activity,
cumulative releases, and/or dose rates. Each quantity may be calculated for a number of
different radionuclides, and may be evaluated for a range of times and for several different
locations. The input data, that is the sampled values of the model parameters, should also be
considered as part of the output, because it may be of interest to investigate how the outputs
vary with individual model-parameter values.

The model output is of little practical use, simply as a collection of numbers. A variety of
statistical analyses are therefore usually conducted. The simplest analysis is to calculate the
mean value of some output quantity. Of particular note is the calculation of individual risk
from the mean of the individual annual dose. An individual receiving a dose, D, in one year
is reckoned to suffer a resultant risk, R, of some serious health effect (different risk measures
can be defined with respect to different health effects). For small annual doses, the risk is
taken to be proportional to the dose:

R=hD. (6)

Values to be used for the constant of proportionality, A, are recommended by the International
Commission on Radiological Protection (ICRP). Each sample case of a PSA calculation may
generate, at any given time after repository closure, a different value for the annual dose.
Each dose value can be associated with a conditional risk, calculated using the above
formula. The overall risk must be calculated by taking the probability of each possible dose
level, and multiplying by the corresponding conditional risk. If the PDF of dose, f(iD), were
known, the overall risk could be calculated as

E:thf(D)dD, %)

that is, as 4 multiplied by the mean dose rate. The PSA calculation provides an estimate of
the mean dose as the average of the dose values given by the set of sample cases.

Other simple statistics can be calculated from PSA results. The variance of an output
quantity can be calculated as a measure of the spread of its distribution. The median of the
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distribution (the value exceeded with 50% probability) is an alternative to the mean as an
indicative central value. A PSA properly performed should produce a complete PDF of the
performance measure(s) plus various statistics such as mean, median, and other percentiles.
The term Uncertainty Analysis (UA) is used in some national programmes to apply to the
determination of either the range of output or estimates of its mean and variance. The term
originated when the analyses were deterministic and special procedures were adopted for UA
to obtain such estimates.

A second aspect of the analysis of PSA results is Error Analysis. Statistics such as means are
only estimates of the properties of the distributions of the output quantities. The true values
of these statistics could only be found exactly by the Monte Carlo method if an infinite
number of sample cases were taken. It is therefore important, for any given finite sample
size, to have some estimate of the possible error in a calculated mean or other statistic. A
widely used way to express this estimation error is to attribute a Confidence Interval to the
estimate of a statistic. For instance, an estimate of a mean value may be given as M+E, at a
given level of confidence, for instance 95%. This indicates that a probability of 95% can be
attributed to the interval covering the true value of the mean lying within a distance E either
side of the value M. In general, the interval size +E depends on the variance of the
distribution of the quantity whose mean is being estimated, the number of samples taken, and
the desired level of confidence. The relationship is given in most elementary texts on
statistics for the case where the sampled quantity has a Normal distribution. However, this is
far from being the case for the outputs of most waste disposal system models to which PSA is
applied. Rather, highly skewed distributions, in which small values are very common and
large values relatively rare, are the rule.

The question of obtaining confidence intervals, without assuming anything about the shape of
the distribution, was considered by the PSAG in its discussions and in conducting
intercomparison exercises. In general, a confidence interval size is found using a formula of
the form

E = aSy/NV2, ®)

where Sy is the standard deviation of N sampled values of the output quantity. For a
confidence level of 95%, the constant of proportionality, ¢, is approximately 1.96 if it is
known that the sample mean has a Normal distribution. However, this is generally not the
case in the application to waste disposal systems. A theorem due to Chebyshev leads to a
value for o of approximately 4.47, based on no restrictive assumptions on the distribution of
the mean estimator. However, the analysis of Woo [1989], following Guttman [1948],
justifies a value for o of approximately 2.68, on the basis that the mean estimator is itself the
sum of N samples from the same parent distribution. For higher levels of confidence than
95%, the difference between the Guttman and Chebyshev limits is even greater.
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A third kind of analysis of PSA results is Sensitivity Analysis (SA). This means the
characterisation of how sensitive the calculated results are to the uncertainty about the values
of the individual input parameters, or to the details of the distributions of the parameters.
The question of how SA should be performed was the subject of several discussions of the
PSAG, and one intercomparison exercise (Level S) was specifically devoted to the subject
(see Section 5.5). SA is an important tool in gaining understanding of complex systems.
However, the strongest reason for interest in SA in the application of PSA to waste disposal
safety analyses is that it can help to guide the acquisition of further data. The uncertainty in
each of the model parameters used in a PSA calculation is not an inherent property, but may
be reduced once sufficient information has been collected and properly interpreted, especially
that from site investigation and laboratory experiments. One recent attempt to explore this
problem using PSA methods has been made by Mackay [1993]. Because experiments and
data collection are relatively expensive, it is important to know which parameters most
sensitively affect the risks or other performance measures, so that effort to reduce uncertainty
can be directed with greatest efficiency.

2.4 Presentation of PSA Results

The results of a PSA calculation carry a great deal of information, and it is important to
present this information in a way that will communicate clearly. Various forms of graphical
presentation are commonly used to achieve this aim. The two main objectives are to address
the given regulatory limits or targets, and to provide understanding of the system being
modelled.

Regulations that are framed in terms of a single output quantity, such as cumulative release to
a given boundary over a given period of time, are well served by plotting the full distribution
of that output quantity. One way to portray this distribution is in terms of the
Complementary Cumulative Distribution Function (CCDF). The CCDF, F(Q) _gives the
probability that a quantity, g, is greater than any given value of Q. F( 0) is always a
monotonic function, tending to value 1 as Q becomes smaller, and to value 0 as Q becomes
larger. An example CCDF plot is shown in Figure 1.

If it is desired to keep separate two different kinds of contributions to the total uncertainty in
q, it is possible to plot a family of CCDFs. Each single plot shows the distribution of ¢
values arising from one class of uncertainty. The spread in the position and shape of the
different CCDFs provides a portrayal of the contribution from the two classes of uncertainty.
This approach is illustrated in Figure 2. Note also how the logarithmic scale for probability
in Figure 2 allows greater detail to be shown in the high-release, low-probability ‘tails’ of the
curves.
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Figure 1 Nustrative plot of a Complementary Cumulative Distribution Function (CCDF)
showing the probability that the calculated consequences exceed any particular value.

Regulations that are framed in terms of the mean of some quantity that depends on time, for
instance annual individual dose or risk, are addressed by plotting the calculated mean(s) as a
function of time. Variants of this kind of plot are useful for showing additional information.
The confidence intervals associated with estimating the means can be shown using error bars,
or line plots of the upper and lower interval limits (Figure 3). The contributions of different
radionuclides to total dose or risk can be plotted along with the total to show clearly the way
that the relative importance of the contributions varies with time.

Sensitivity analysis is concerned with the relationship between individual input and output
quantities. If a given output is plotted against a single model parameter in the form of a
scatter diagram, the degree and nature of any correlation between them can be made evident.
Although the system model gives a well-defined functional relationship between the inputs
and outputs, a plot of one output against one input quantity will show random scatter,
because the results plotted include the influence of other parameters that have been randomly
sampled. Figure 4 shows some examples of scatter diagrams, taken from the report of the
PSACOIN Level 1b exercise [NEA PSAG, 1993a].
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Figure 2 Distribution of CCDFs for releases to the accessible environment for one scenario

class considered in the 1991 WIPP performance assessment (PA) [WIPP PA Division, 1991]. The
Containment Requirement shown in the Figure forms part of the US Environmental Protection
Agency's (EPA'’s) regulatory standard for the disposal of high-level and transuranic radioactive wastes,
and is expressed as an upper limit on the probability of exceeding particular values for cumulative
releases of radionuclides to the accessible environment [US EPA, 1993].

There are other ways to portray sensitivities. An interesting example is shown in Figure 5,
taken from the report of the PSACOIN Level S exercise [NEA PSAG, 1993b], which was
particularly devoted to sensitivity analysis (see Chapter 5, and also Johnson and Lucas,
1987). In this case, the departure of the plot from a straight line gives a visual indication of
sensitivity.
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Figure 3 Example plot of mean dose versus time, taken from the PSACOIN Level 1b report

[NEA PSAG, 1993a). Results from calculations contributed by different participants in the exercise
are shown using different symbols, while Chebyshev 95% confidence bounds on the mean dose
values are shown using lines. Two different radionuclide contributions are shown separately. The
lower limit of the 95% confidence interval is not shown for the 2**U chain at 10° years because the
interval is larger than the mean value itself at this time (indicated by vertical dotted line at the last time
for which the full confidence interval can be shown).

To obtain this diagram, the cases of the PSA calculation are first sorted into ascending order
by the sampled value of one of the model parameters (‘FLOWV1’ in the example shown in
Figure 5). The horizontal axis of the graph is the cumulative distribution function (CDF) for
the parameter. So, for instance, the CDF value 0.60 refers to the smallest 60% of the
sampled values of the parameter. For any such fraction, the calculated values of the output
quantity (in this case, dose at a particular time) for those cases are summed, to give their
contribution to the mean of the output quantity. This is plotted vertically, normalised so as to
give the contribution relative to the mean over all cases. From Figure 5, it can thus be seen
that the 20% largest sampled values of the variable FLOWV1 contributed about 80% of the
mean of the dose at 106 years, making this dose value quite sensitive to this particular model
parameter. For a parameter that was not a sensitive determinant of dose, the plot would
approximate to a straight line.
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Figure 4 Example scatter plots showing the correlation between sensitive model parameters

and outputs of the model, in this case the contribution of particular radionuclides to dose at particular
times. The plots show a great deal of scatter, except for the de,s for the 2**U chain at 10° years, which
has a rank correlation coefficient of -0.94. Plots are reproduced from the PSACOIN Level 1b report
[NEA PSAG, 1993al].
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Figure 5 Example sensitivity plot showing ‘Cumulative contribution to mean’, reproduced

from the PSACOIN Level S exercise [NEA PSAG, 1993b]. The departures of the errors from a
straight line give an indication of sensitivity to the input parameter, FLOWV1.

All of the graphical presentation forms mentioned can contribute to understanding of the
system. However, further communication of the significance to overall performance of
selected contributing processes, or of selected subsystems, is often sought by means of other
plots. For instance, in a multi-barrier disposal system, the different barriers (e.g., primary
containment, chemical conditions in the repository, engineered and natural barriers to
migration) contribute with different levels of efficiency, depending on the radionuclide
concerned, and on time. Measures of individual barrier performance can be devised (such as
the fractions of activity contained and released at each stage), and portrayed graphically using
column or pie charts. Such presentation is useful regardless of whether Monte Carlo
approaches are adopted for the consequence analysis.
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3. Development and Application of PSA

This chapter presents a brief history of the development of PSA for waste disposal
assessments. The account is largely based on the summary provided in a recent article by
Thompson and Sagar [1993], which itself builds on the summary by Thompson et al. [1990].

3.1  World-wide Development of PSA Methodology

During the late 1970s and throughout the 1980s, pioneer work on the application to
radioactive waste disposal of PSA using Monte Carlo methods was undertaken in the US by
Sandia National Laboratories (SNL) [summarised in Cranwell et al., 1987]. The studies were
applied to hypothetical high-level waste (HLW) disposal facilities in a variety of geological
settings [e.g., Bonano et al., 1990]. The program SWIFT I was developed for detailed
groundwater flow modelling [Reeves et al., 1986], and results obtained with this program
were used to construct a network flow model composed of one-dimensional segments. The
network flow-and-transport program NEFTRAN [Olague et al., 1991] was then used in
probabilistic mode to estimate radionuclide releases with account taken of parameter
uncertainty.

At about the same time as work was initiated in the US, work began in Canada on SYVAC,
Version 1, again with a view to evaluating the potential deep geologic disposal of HLW.
Analytic solutions for the source term and for groundwater-mediated transport in one
dimension were evaluated and combined numerically, using parameter values sampled from
PDFs based on expert judgement [Wuschke et al., 1981].

SYVACI1 was taken up in the UK by HMIP, who adapted the program to UK-specific deep
and shallow disposal concepts by providing new submodels [Thompson, 1987]. The
resulting programs were named SYVAC A/C [SCICON, 1986] and SYVAC D [SCICON,
1988]. Meanwhile, separate development in Canada led to versions SYVAC 2 [Sherman et
al., 1986] and SYVAC3 [Goodwin et al., 1987], incorporating multiple source-term
submodels, network geosphere transport submodels, and a compartment model of biosphere
transport and radiological exposure. These programs, and the extensive databases of
parameter values and distributions, were developed under appropriate Quality Assurance
regimes.
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During the 1980s, several European groups undertook independent development of PSA
programs, including LISA, developed by the Joint Research Centre (JRC) at Ispra under the
European Community’s (EC) radioactive waste management research programme [Saltelli et
al., 1984], EMOS, developed by the GSF-Research Centre for Health and the Environment in
Germany [Storck et al., 1990], PROPER, developed by the Swedish Nuclear Fuel and Waste
Management Company (SKB) [SKB, 1989], and MASCOT, developed by AEA Technology
on behalf of United Kingdom Nirex Limited [Sinclair and Agg, 1994]. Many of these codes
were developed in the context of co-operation and information exchange provided by the
PSAC User Group, as the PSAG was then known. Further improvement of PSA capability
continued into the 1990s, with organisations in Japan, North America, and throughout Europe
developing and using new PSA codes.

Interest in representing the processes occurring in the biosphere, as part of PSA- modelling,
varied among the national groups involved. This was largely conditioned by the regulatory
frameworks being addressed. For example, US regulations for disposal of HLW consider
releases of radioactivity to a notional boundary around a repository? [US EPA, 1993].
Among those interested in biosphere modelling over a long time-frame, the HMIP
programme stood out in giving attention to modelling the future evolution of climatic
conditions and their influence on the repository environment. This work gave rise to the
TIME2 [Dames and Moore, 1986] and TIME4 [Dames and Moore, 1991; 1993] codes for
generating descriptions of environmental evolution in a way that could be driven by random
selection of parameters, and thus incorporated into the PSA framework. To complete the
capability of conducting PSA analyses with time-dependent models, the VANDAL code was
developed (in several versions) by HMIP, incorporating submodels for repository releases,
groundwater flow and transport (using a network approach that could extend in three
dimensions and treat time-dependent boundary conditions), and a dynamic biosphere
submodel [Kane, 1992].

Consideration of the effect of possible future human actions causing releases of radioactivity
or otherwise affecting system performance requires a rather different approach than that for
other exposure pathways. Particular attention to this class of phenomena was given in work
undertaken on behalf of the US Department of Energy (DOE) for the Waste Isolation Pilot
Plant (WIPP) in New Mexico [WIPP PA Division, 1991; WIPP PA Department, 1992].
Various intrusive activities, such as exploratory drilling for hydrocarbons and mining for
potash, were represented as independent sequences of events whose timings and magnitudes
could be obtained by sampling from probability distributions.

2 ys regulations for HLW disposal are currently under revision.
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3.2 Applications of PSA

The main applications of PSA for radioactive waste disposal in OECD Member countries
active in the PSAG are briefly reviewed here. The review is not comprehensive, and focuses
on work in Belgium, Canada, Germany, the UK and the US, in the period during which the
PSAG was active (1985-1994). Not all OECD Member countries that developed PSA codes
were active in the PSAG, and this review does not consider the work in these countries (e.g.,
France, Netherlands). Furthermore, some countries supported development of multiple PSA
codes at different national organisations (e.g., the US), but not all of these organisations (and
codes) were represented at PSAG meetings, or they may have been represented only
sporadically. This review also excludes consideration of developments and applications in
these organisations.

The LISA code was adapted by the Belgian Centre for Nuclear Energy Studies (SCK/CEN) in
1985 to allow simulations of the behaviour of geological disposal systems in clay layers. The
post-processor of the LISA code has also been extended, in collaboration with the JRC-Ispra,
to perform various techniques for sensitivity and uncertainty analysis [Saltelli and Marivoet,
1990]. Over the past decade the codes has been applied in various performance assessments,
and additional modules have been developed to describe the migration of radionuclides in the
various components of repository systems.

Performance assessments of the geological disposal of reprocessing waste in the Boom Clay
under the nuclear site at Mol-Dessel have been carried out in the framework of the EC
projects PAGIS [Marivoet and Bonne, 1988] and PACOMA [Marivoet and Zeevaert, 1991],
and as part of the UPDATING 1990 study [Marivoet, 1992]. These assessments incorporated
both deterministic and probabilistic calculations; a similar approach was also applied for an
assessment of the direct disposal of spent fuel in clay [Marivoet et al., 1996]. A preliminary
performance assessment mainly based on probabilistic calculations has also been carried out
by SCK/CEN in the framework of an evaluation of the possibilities for shallow land burial of
low-level radioactive waste (LLW) in Belgium [NIRAS/ONDRAF, 1994].

Canada

A series of assessments has been made of the Canadian concept for disposal of nuclear fuel
waste in a deep repository in plutonic rock in the Canadian shield. The first interim
assessment [Wuschke et al., 1981] made use of the first generation of the SYVAC family of
PSA codes, now known as SYVACI, and employed a relatively simple system model, with
about 30 sampled parameters. SYVACI was also used for assessments of seabed disposal of
fuel recycling wastes [Guvanasen, 1987], and for an assessment of the disposal of
intermediate-level radioactive wastes (ILW) [Guvanasen, 1985].
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These experiences led to the development of SYVAC2, which was used for a second interim
assessment of the Canadian concept for nuclear fuel waste [Wuschke et al., 1985]. A more
detailed system model was also developed, with over 500 sampled parameters. A
comparison was made between alternative waste forms, spent fuel and reprocessed fuel.

The latest generation of the SYVAC family is SYVAC3, which has formed the basis of a
quantitative analysis for a post-closure assessment of a possible implementation of the
Canadian disposal concept [Goodwin et al., 1994]. The accompanying models and data are
known as CC3. SYVACS3 has also been used in the PSACOIN exercises, and in a study of
LLW disposal options for New York State [Acres International Corporation, 1989].

Germany

The main PSA capability in Germany is represented by the EMOS code [Storck et al., 1990].
German applications of PSA have been made in several research projects, such as the EC-
funded studies PAGIS [Storck et al., 1988] and PACOMA [Hirsekorn et al., 1991], both of
which used data from a hypothetical repository in the Gorleben salt dome. A safety study of
the disposal of heat-generating waste in Germany has been reported [Buhmann et al., 1991],
and a variant of the EMOS code has been used for a study of disposal of HLW in salt domes
in the Netherlands [Prij et al., 1993].

During the recent review of the licence application for the Konrad LLW and ILW waste
repository, probabilistic calculations for uncertainty and sensitivity analysis were carried out
by the Gesellschaft fiir Reaktorsicherheit (GRS) on behalf of the responsible authority, in
order to help evaluate the deterministic analyses used in the proponent’s safety case. The
groundwater travel time from the repository to the biosphere was used as a performance
measure.

United Kingdom

Development of capabilities for safety assessment of radioactive waste repositories has been
pursued by Nirex and by HMIP. On behalf of Nirex, AEA Technology has applied the
MASCOT code [Sinclair and Agg, 1994] to comparative studies of alternative types of host
geological conditions for a deep ILW and LLW repository in the UK [Sinclair, 1989], and to
assessments of the Sellafield site [Nirex, 1995a]. The methodology adopted by Nirex has
been described in a series of Science Reports [e.g., Nirex, 1994; Nirex 1995b].

HMIP has developed and applied their approach, which aimed at employing PSA as the
central aspect of their capability, as a regulator, to critically evaluate any safety case
submitted by industry for the underground disposal of solid LLW and ILW. HMIP has
conducted a series of three trial assessments, termed ‘Dry Runs’ [Thompson and Broyd
(Eds.), 1986; Gralewski et al., 1988; Sumerling (Ed.), 1992], which demonstrated post-
closure assessment of repositories for LLW and ILW, hypothetically constructed in clay strata
at the Harwell site. The most recent study (Dry Run 3) included collation of data,
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development of conceptual models, development of numerical models, elicitation of
parameter distributions, probabilistic system simulations, re-examination of high-risk cases,
and an ‘uncertainty and bias audit’. The most notable feature of this study was its
demonstration of an approach to allowing explicitly for temporal uncertainty, by modelling
environmental change and its effects on the release and transport of radionuclides. The PSA
codes used were VANDAL [Kane, 1992] and TIME4 [Dames and Moore, 1991].

HMIP has also applied their methodology and codes to a post-closure assessment of a near-
surface LLW disposal site operated by British Nuclear Fuels Ltd. at Drigg in Cumbria
[Thompson et al., 1993]. The probabilistic risk assessment calculations used a three-
dimensional network model of flow and transport, and also included an assessment of human
intrusion and of gas-phase effects.

United States

PSA has played a central role in a series of assessments of the WIPP, a planned geological
repository for transuranic defence wastes situated in New Mexico. The assessments have
been carried out by SNL on behalf of the US DOE [WIPP PA Division, 1991; WIPP PA
Department, 1992]. A scenario analysis was performed, leading to a set of features, events
and processes (FEPs) that were believed, after a process of systematic enumeration and
screening, to be potentially significant to system performance. Important disruptive FEPs
involved future human action. Combinations of the FEPs were taken to define scenarios.
For each scenario, a PSA calculation was performed that accounted for the probabilities of
occurrence and sequencing of the scenario-defining events. A suite of modelling programs
known as CAMCON was used. The uncertainty in the model parameters was kept separate
from the uncertainty about the occurrence of the scenario-defining events, and results for
consequence (cumulative release to a boundary over 104 years post-closure) were
correspondingly presented as a family of CCDFs.

Both the US DOE [e.g., Wilson et al., 1993] and the US Nuclear Regulatory Commission
(NRC) [US NRC, 1995] have conducted probabilistic assessments of the potential HLW
repository at Yucca Mountain in Nevada. As for the WIPP assessments, scenarios have been
constructed from disturbing influences, both human-induced and natural.

Numerous other PSAs have been conducted in the US for the disposal of radioactive wastes.
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4. Topics Discussed by the PSAG

In this Chapter, a selection is presented of the topical sessions that were held by the PSAG in
fulfilment of its objective to explore technical issues of mutual concern to the members. A
list of the main themes covered in all of the topical sessions is provided below - some of the
themes were discussed more than once. The first four issues listed (shown in italics) are
presented in more detail in the subsequent sections of this Chapter. The last three issues
listed are discussed at least briefly in other parts of this document, as indicated below.

e Derivation of parameter PDFs.

e Statistical sampling strategies and convergence.

e Methods for treatment of different types of uncertainty.

e The treatment of spatial variability.

¢ The reduction of research codes to PSAC submodels.

e Scale effects and the use of nondimensional variables.

e Treatment of model uncertainty and probabilistic validation of models.
e Presentation of results from PSA (addressed in Section 2.4).

e Techniques for sensitivity analysis (addressed in Section 5.5).

e National site-specific probabilistic safety assessments (addressed in Chapter 3).
Derivation of parameter PDFs

A topical session on the justification of PDFs for use in PSAs was held at the Fifth Meeting
of the PSAG (Stockholm, June 1987). Four papers were presented, covering a wide range of
issues relating to this subject [NEA, 1987]. Stephens (Canada) described the guidelines that
were developed at AECL for experts whose opinions were being elicited, to define PDFs for
the third major assessment of the Canadian concept for HLW disposal. He stressed that only
guidelines, and not rigid rules, could be laid down. Among the reasons for this are that the
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appropriate values for a parameter may depend on the way the model in which it appears is
being used, and on the approximations (such as time-independence) and model biases present
in the model calculations. The purpose and end-points of the assessment also have an
influence.

The problem of characterising correlation between two or more uncertain parameters was
discussed. No general methods were found for describing such correlation, but Liebetrau
(US) presented a paper on a practical methodology for implementing specified correlations in
a PSA calculation.

Two other speakers presented viewpoints on the use of subjective opinions elicited from
experts. Dalrymple (UK) described the systematic approach that was being used by HMIP,
while Sagar (US) described two alternative methodologies for using expert opinion — the
‘Delphi Method’, using a panel of experts, and the ‘Probability Encoding Method’, in which
opinions given individually by different experts are combined using a Bayesian analysis.
Common features of the different approaches to elicitation are that they involve the steps of
motivating, structuring, conditioning, encoding and verifying. Both of the presentations
noted that structured elicitation of expert opinion, while desirable, can consume much time
and expense.

The problem of dealing with conflicting opinions from different experts was also touched
upon.

Group discussion about the expense of applying systematic elicitation methodologies
emphasised the importance of prioritizing parameters, so that effort could be concentrated on
the most important ones. In order to do this, sensitivity analyses would be needed, as well as
an agreed basis for defining ‘importance’. Discussions such as this were instrumental in
bringing the Group later to conduct the PSACOIN Level S exercise (see Chapter 5).

Statistical sampling strategies

In Chapter 2, it was noted that PSA need not necessarily be based on the Monte Carlo
method. However, all of the experience represented by the PSAG is with methods involving
random sampling of parameter values from specified PDFs. Several different sampling
schemes have been used, which are briefly described here, along with the Group’s views of
them. The issue of sampling was discussed at several meetings, going back to the early days
of the Group, and developments continued throughout the ten years of Group activity.

For the purposes of discussion, let it be assumed that the system model has several uncertain
parameters that may be considered as statistically independent, and that each of these
parameters has been assigned a PDF quantifying expert opinion as to the appropriateness of
using different values of that parameter with the given models and for the given application.
These assigned PDFs will be called the ‘true PDFs’, to distinguish them from the distribution
of sampled values used in the calculations, which may be different.
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In Simple Random Sampling (SRS), each independent parameter is sampled directly from its
‘true’ PDF, that is, the expected density of sample points in any region is equal to the density
given by the assigned PDF. Because the individual parameter PDFs combine multiplicatively
(equation 2 in Chapter 2), certain combinations of parameter values, deriving from the ‘tails’
of several individual PDFs, will only rarely be sampled, even when the number of sample
cases is large. If some rare parameter combinations give rise to large calculated consequence
values, large estimation errors for consequence means or other statistics can result.

A variant of SRS is Latin Hypercube Sampling (LHS), in which an attempt is made to
minimise fluctuations of the actual sampling density for each parameter away from the ‘true’
PDF. This is done by partitioning the range of each parameter into a number of equally
probable discrete sub-ranges, and arranging the sampling so that each subrange is represented
exactly once for each parameter.

Another method used by some PSAG member groups is Importance Sampling (IS). This was
first described for application in PSA for radioactive waste disposal systems by Johnson and
Lucas [1987]. Here, the sampling process is similar to that in SRS (no restriction on
representation of sub-ranges as in LHS), except that the PDFs from which the samples are
drawn are different from the ‘true’ PDFs. The differences between the ‘true’ and sampling
PDFs are determined in a way that aims to improve the accuracy, for a given number of
sample cases, of estimation of the mean of a given output quantity. In effect, IS focuses on a
particular part of ‘parameter space’ that is most important in determining the mean of the
output quantity of interest. To compensate for the bias in the sampling, the estimation
formulae for means and other statistics have to be modified.

SRS, LHS and IS were all used in the Level E exercise (see Chapter 5). However, in that
exercise, no firm conclusions could be drawn about their relative merits, because the number
of independent calculations represented by participants’ contributions was insufficient to
indicate any systematic tendency for one scheme to produce answers closer to the exact mean
than another.

The measure of performance of a sampling scheme is that the means or other statistics that
are estimated from the sample cases converge rapidly to the true result as the sample size
(number of cases) increases. In general the true result is unknown, and it is difficult to
measure the convergence simply by watching the progress of the estimated mean or other
statistic as the sample size is increased. This is because, when the distribution of some
consequence value is skewed, values that are much larger than the mean can occur with low
probability. By definition, such outlying values arise ‘without warning’ at infrequent
intervals as samples are taken. The running estimate of the mean can therefore appear to
stabilise, only to be significantly perturbed by a large sample output value appearing.

In the topical session at the Ninth Meeting (Albuquerque, July 1989), Iman (US) argued that,
for a given number of sample cases, LHS would give convergence significantly better than
that of SRS. A substantial number of users of the PSA methodology have been attracted by
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the prospect of such an advantage. A theoretical demonstration that the estimation accuracy
of LHS is better than or equal to that of SRS is possible in the special circumstance that the
consequence depends monotonically on each of the model parameters. However, even in this
case, the demonstration provides no formula for the degree of benefit.

Some evidence on the relative merit of different sampling schemes was provided in a paper
presented by Robinson, Roberts and Sinclair (UK) in the topical session at the Twelfth
Meeting (Paris, November 1991). The paper gave results of a comparison between sampling
schemes applied to a model system similar to that used in the Level E test case. This work
was based on repeating the application of each sampling scheme a large number of times.
The authors showed that, for the model system under consideration:

e LHS did not perform significantly better than SRS, both schemes being slow to converge
as the sample size increased, for the reason that the largest values of consequence tended
to arise from a rather localised region of parameter space.

e IS gave significantly better performance than SRS or LHS (a factor of 10 on the number
of samples required to attain a given accuracy). This improved performance applied to
estimating means of the output quantities for which the ‘focusing’ of the IS was designed.

e IS can perform badly (worse than SRS or LHS) for statistical results for which it is not
‘focused’.

¢ A modified version of Importance Sampling (MIS) could be used that kept the good
performance of IS for statistics on which it is focused, while retaining adequate
performance (similar to that of SRS or LHS) for results on which it is not focused.

Different treatments of uncertainty

The assessment codes used by members of the PSAG are all probabilistic in nature, and are
therefore aimed at taking into account uncertainties regarding the systems to be modelled.
However, the manner in which uncertainty is treated can be affected by the view taken of the
nature of uncertainty. This question was discussed at several meetings, and was the subject
of a topical session at the Tenth Meeting of the Group (Madrid, March 1990), where five
papers were presented [NEA, 1990].

Many of the uncertainties encountered in radioactive waste disposal safety assessments arise
because of a lack of precise knowledge, although that knowledge could in principle be gained
by sufficient investigation of the system. Probabilistic calculations are therefore performed
on the basis of subjective opinion about the outcome of those theoretically possible
investigations, and the parameter PDFs are subject to potential change if further information
becomes available. This can be contrasted with a situation in which the behaviour of a
system could be governed by stochastic events or processes operating in the future, about
which only probabilistic statements can be made today, however much investigation is
carried out. This second situation is encountered, for instance, in reactor safety studies where
component failure is a stochastic process. At the Madrid meeting, Hofer (Germany)
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proposed classification of uncertainties into Type A (stochastic) and Type B (subjective), as
an aid in conducting and presenting the results of a PSA; others questioned the value of

making such a distinction.

The justification for using probability theory to manipulate subjectively specified
probabilities is through the Bayesian interpretation. This was clearly presented to the Group
at the Madrid meeting by Smith (UK), who explained it in terms of a betting analogy. Bets
about the true outcome of any uncertain event, provided they satisfy certain elementary
conditions ensuring self-consistency, can be shown to be governed by the rules of probability
theory.

Others have argued for the use of approaches to handling uncertainties based on Fuzzy Set
theory. At the Madrid meeting, both Shaw (UK) and Nies (Germany) presented this
approach, which uses ‘min-max’ rules to combine elementary fuzzy belief measures, in place
of using the rules of probability to combine elementary probabilities. The main objections to
the Fuzzy approach were that it is not necessary (because the probabilistic approach is said to
be able to handle all cases), and that there is no equivalent to Bayes’ Theorem for updating
prior estimates.

At the Thirteenth Meeting of the PSAG (Paris, June 1992), Robinson (UK) presented an
interpretation of the Fuzzy approach as a generalisation of interval analysis, and spelled out
some details of how it could be implemented using Monte Carlo methods not dissimilar to
those of traditional PSA. The choice between the two approaches does not rest on any
practical advantages for one or the other. Rather, it is a question of the aspects of uncertainty
that an assessor wishes to address. The probabilistic approach considers how expert
judgement leads to a rational bet on what the outcome will be. The Fuzzy approach considers
how expert judgement constrains what the possible outcomes could be. The statement of
constraint on outcome will often be rather less restrictive than appears to be given by the
probability distribution for consequence that is provided by PSA, because of the way that the
Fuzzy approach propagates uncertainty through the models. The relevance of the different
approaches to a particular safety case may depend on the regulations being addressed.

Spatial variability

Geology is inherently heterogeneous on a range of scales. Spatial heterogeneity is of
particular interest in the analysis of underground waste disposal systems, not only because of
the difficulties it produces in measuring hydrogeological properties, but also because its
complexity makes it desirable to model groundwater flow and radionuclide transport in a way
that does not take explicit account of the spatial variations. A topical session on Treatment of
Spatial Variability was held during the Fourteenth Meeting of the PSAG (Albuquerque,
January 1993). A variety of technical issues and approaches for analysing and modelling
spatial heterogeneity were covered [NEA, 1993].
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Grindrod (UK) described work using fractal concepts to represent heterogeneity within the
Culebra Dolomite at the WIPP site. He reported on the use of multi-fractal techniques for
analysis of the site data. Zimmerman (US) reported on the use of spatially distributed
synthetic data for transmissivity to estimate groundwater travel. He implemented
geostatistically based inverse techniques, and concluded that knowledge of boundary
conditions is more important than exact knowledge of the transmissivity field. De Marsily
(France) gave a thorough overview of non-geostatistical techniques for representation of
geological features such as fractures. He discussed Boolean models for fracture and facies
generation, continuous processes with defined thresholds (such as the indicator kriging and
threshold Gaussian functions), and process models. Mackay (UK) reported work in which
real data (from the Harwell site) had been supplemented with synthetic data. He expressed
the view that a single conceptual structural model needs to be established to determine data
needs. He argued that a staged site investigation is needed to obtain a single acceptable
macroscopic conceptual model. Bagtzoglou (US) presented his findings on the application of
artificial neural networks, for estimating spatial distributions of hydraulic conductivity. This
method was shown to be appropriate when qualitative information together with ‘hard’ data
is to be utilised. Tompson (US) gave a presentation on the application of stochastic methods
for simulating transport of contaminants in complex, physically and chemically
heterogeneous porous media. Neuman (US) presented his findings on scale and information
content as these pertain to subsurface flow and transport modelling and validation exercises.

This topical session succeeded in providing an overview of the state of the art in the field of
stochastic methods and geostatistical treatment of spatial variability.

34



5. The PSACOIN Exercises

The PSACOIN exercises have consumed much of the time of the PSAG, and have led to the
publication by OECD/NEA of five reports. The conduct of such exercises was envisaged
from the early days of the Group.

International code verification, validation and intercomparison exercises are well-established
methods for helping to increase confidence in the investigation and assessment methods
employed in radioactive waste disposal. Most exercises of this type have focused on models
for particular subsystems of a disposal system. Thus, INTRACOIN [Swedish Nuclear Power
Inspectorate, 1984; 1986], HYDROCOIN [NEA, 1992] and INTRAVAL [NEA, 1996] have
concentrated on groundwater flow and radionuclide transport through the geosphere;
BIOMOVS [BIOMOVS II Steering Committee, 1996] has specialised in biosphere transport
models; and geochemical and coupled geomechanical-hydrological models have been
addressed by the CHEMVAL [Falck and Read, 1996] and DECOVALEX [Gros et al., 1987]
exercises, respectively.

The PSACOIN series differs from these in attending to models of the entire disposal system.
The participants have been distinguished, not by expertise in any particular class of physical
or chemical phenomena, but by interest in and involvement with the development of
probabilistic assessment tools for waste disposal systems. The aim, therefore, has not been
specifically to validate models against ‘real-world’ behaviour, but rather to build confidence
in the correct operation of what can be quite large and complex computer programs for the
conduct of Monte Carlo PSA calculations. All such codes incorporate (or at least control)
large numbers of submodels for different subsystems, implicitly account for particular
uncertainties, and produce integrated measures of system performance.

Two problems unique to comparing probabilistic results are (i) verifying the correct operation
of the underlying models, and (ii) verifying the correct application of the procedure used to
treat parameter uncertainty and the way the procedure leads to estimates of uncertainty in the
output quantities. If two PSA codes produce different results, it is necessary to determine
whether the models themselves are operating differently, or whether the differences belong
more to the set of sampled cases with randomly selected parameter values.
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Work on the PSACOIN exercises began at the First Meeting of the Group. A series was
envisaged in which the basic methodology, independent of the particular models, would first
be tested, followed by a progression towards modelling of the kind that will be involved in
real national safety assessments. Because of this envisaged pattern of increasing complexity
and realism, the exercises were named as ‘Level X’, where X was to be numeric. As the
series progressed, however, certain exercises to address particular issues were devised, and
non-numeric Level names were added.

After initial conception of each exercise, the usual pattern for carrying it forward was to
appoint a Task Group to draw up a written specification and a questionnaire for eliciting
contributions in a standard form. This work typically involved pilot running of the test case
to discover any difficulties inadvertently introduced by the draft specification. With the
support of the NEA, the Task Group analysed the responses, and drew up a written report for
publication by the OECD. At every stage of this process, approval from the whole PSAG
was obtained and, in many cases, participants iteratively updated their contributions in the
light of questions raised by the Task Group’s analysis. In some instances, the Task Group’s
analysis was able to point to errors in particular codes. A key benefit of the PSACOIN
exercises was the opportunity provided for participants to become aware of and correct such
errors.

In the following subsections, each of the PSACOIN exercises is described briefly.

5.1 Level O

This first exercise aimed to test the ‘executive’ functions of PSA codes, including in
particular the process of random selection of parameter values from different probability
distributions, and the application of mathematical system models composed of linked
submodels. The exercise also aimed to test ‘post-processing’, that is statistical analysis of the
results, including sensitivity analysis. For these purposes, the exercise specified an extremely
simplified model of release of radionuclides from a repository vault, one-dimensional
contaminant transport through the geosphere, and doses arising from consumption of
drinking water. Twelve organisations contributed results.

The ‘simple’ model turned out to pose certain problems for statistical convergence unlikely to
be typical of real applications, but after four iterations a generally good agreement was
obtained for estimates of mean dose versus time, and it was concluded that the executive
parts of the PSA codes and their post-processors were operating as expected. Lessons were
learned with regard to specification of exercises, analysis of results for comparison, and
presentation of PSA outputs. Unresolved issues over the ranking by ‘importance’ of the
model parameters led to the conception of further exercises.

The Level O report was published in 1987 [NEA PSAC User Group, 1987].
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5.2 LevelE

Level E shared the same purpose as Level 0, with the important addition of comparison with
an exact probabilistic solution that enabled mean dose against time to be calculated precisely
for a model disposal system. Needless to say, most practical assessment problems are very
far from allowing such exact solutions to be obtained. Nevertheless, the model used in the
exercise, while still relatively simple, was more realistic than that used for Level 0. It
involved release from a vault by groundwater leaching, a two-layer geosphere transport path,
and a drinking-water dose model. The exercise supplemented the probabilistic case with
several deterministic cases (fixed combinations of model parameters), in order to assist with
establishing correct code operation and data input. This practice was followed in later
exercises.

The ‘exact solution’ for the mean dose against time was made possible because certain
aspects of the mathematical modelling were amenable to an analytic approach. In the source
term (the release rates of radionuclides from the repository), no nonlinear processes (such as
solubility limitation) were specified to occur, but only simple leaching by a constant flux of
groundwater was assumed, giving radionuclide fluxes proportional to the remaining
inventory. Similarly, each of the two geosphere layers was treated in one dimension, with
advection and longitudinal dispersion occurring in a uniform groundwater flow field, and
with a simplifying choice of boundary conditions. The drinking-water dose model consisted
of only a multiplying factor, which converted radionuclide concentrations in groundwater at a
particular point to doses. These simplifications allowed an analytical solution to be obtained
for any given choice of submodel parameters, via application of a Laplace transform to the
time dimension. The PDFs for the submodel parameters were given sufficiently simple
forms that averaging of the Laplace-transformed solution over the parameter distributions
could also be done analytically. The only step requiring numerical evaluation was the final
inversion of the Laplace transform to give mean dose as a function of time. This step could
be carried out to give results that were accurate to some four decimal places, and certainly
suffered no uncertainty associated with limited sample-set size.

In the exercise, participants were asked to apply their Monte Carlo PSA codes to the problem,
ignoring the analytic route to the solution. Different participants tackled the problem using
different parameter sampling schemes (SRS, LHS, IS), so there was an opportunity to
compare whether these choices had any influence on the proximity of the results to the exact
solution.

At the time the exercise was being framed, the issue of convergence of PSA results was a
matter for debate within the PSAG. A proposed approach (the ‘Shapiro-Wilkes’ test) to
testing the validity of specifying confidence limits on estimates of mean values was
recommended to participants for evaluation.
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The different predictions obtained with the 10 participating PSA codes were found to agree
generally very well with the exact solution and with each other, despite the use of different
sampling methods, different time-step algorithms, and sample sizes ranging from 100 to
10.000.

The study was inconclusive about the relative merits of different parameter sampling schemes
which, if nothing else, indicated the absence of any overwhelming advantage of any one
scheme for this particular problem. The Shapiro-Wilkes test was not found to be a reliable
indicator of convergence. However, the exercise was useful in providing an occasion to
explore the assignment of confidence limits on the basis of Normal statistics, Chebyshev’s
theorem, and the Guttman analysis (see Chapter 2 for a brief explanation).

The Level E report was published in 1989 [NEA PSAC User Group, 1989].

5.3 Level 1a

The Level 0 and Level E exercises had required most participants to write special-purpose
code to implement the models specified. Level 1 encouraged a trend to greater realism by
encouraging the use of production submodels already developed by participants for use in
their national programmes.

The Level la test case addressed a deep repository concept: it specified modelling of
mobilisation of radionuclides within the vault, release into a two-stage geosphere transport
path, and calculation of doses from drinking well water. One aim of the exercise was to
begin to evaluate the relative importance of the uncertainties associated with imprecisely
known parameter values and those associated with the possibility of taking different
mathematical approaches to modelling a given set of processes. This aim could only partially
be fulfilled, because the test-case specification was fairly prescriptive with regard to
geosphere transport modelling methods, although it gave more freedom with respect to the
vault modelling. Modelling was also constrained in some cases by the participant’s choice to
use existing PSA submodels not necessarily ideally suited for this particular application, as
opposed to developing new code as in previous exercises.

In the event, modelling differences mainly arose in the treatment of advective and diffusive
mechanisms for the transport of radionuclides out of the repository. However, for this
particular exercise, parameter value uncertainty contributed with equal or greater significance
to the overall uncertainty in assessment results. Overall, the Task Group concluded that to
make a more instructive comparison of the effects of parameter-value uncertainty and
modelling uncertainty would require an exercise in which the modelling approaches were
constrained only by the existence of a body of data (whether real experimental data or
synthetic field data created for an exercise), which would serve to justify or rule out any
particular modelling approach.
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The Level 1a report was published in 1990 [NEA PSAC User Group, 1990].

5.4 Level 1b

The Level 1b test case contrasted with previous exercises in focusing on biosphere
modelling, to the extent of excluding modelling of the geosphere altogether. Earlier exercises
had used simple equilibrium biosphere models, calculating individual doses by application of
radionuclide-dependent constant factors to the calculated rate of release of each radionuclide
from the geosphere. Doses in the previous exercises were assumed to arise only through
consumption of drinking water.

In Level 1b, a simple compartment model was used to represent transport processes within
the biosphere, and seven different exposure pathways were considered in arriving at the total
dose that an individual could receive. A simple source term (the rates of release of
radionuclides into the biosphere) was specified, which did not seek to represent in any
significant detail processes involved in release from a repository and transport through the
geosphere. This specification could be considered as representing approximately some
concepts for near-surface disposal, but no use was made in the exercise of such a conceptual
framework.

The exercise specification was prescriptive with regard to the mathematical representation,
and did not give an opportunity to compare different interpretations or treatments of a
common body of information. Rather, the objectives of the exercise were to give participants
experience in the application of PSA methodology to biosphere transport and exposure
submodels, and to explore the effects of parameter uncertainty in these submodels, in the
context of a system where individuals can be exposed by several pathways. To the extent
that the codes used by participants were applicable to other systems, the exercise would also
usefully contribute to the verification of these codes.

Comparison of the contributions obtained from participants, using a number of different
codes, showed good agreement in general, not only for the probabilistic results, but for a
deterministic ‘central case’ in which every parameter was fixed at a value central to the PDF
defining its uncertainty. The exercise provided a demonstration of the practicability of
incorporating into PSA models representations of biosphere processes with a modest level of
complexity. The advantages of so doing include being able to allow explicitly for the
influence of, and the uncertainty in, a number of processes within the biosphere that may
interact in a complex way.

The results illustrated several effects that may arise in PSA applications incorporating
moderately complex biosphere models, depending on the system being modelled:

* The peak mean dose calculated in the probabilistic case was about 5 times greater than
the peak dose in the deterministic central case. Whereas the deterministic peak dose has a
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probability close to one (close to being certain), the probabilistic peak dose has a much
lower probability of being realised. This difference points towards the difficulty in
defining a central case (for deterministic analysis) that would be equivalent to a
probabilistic case (e.g., mean case) in some sense.

* Doses were not found to be significantly sensitive to any single model parameter. The
uncertainty in dose arose from the combined effect of many parameter uncertainties.

* The drinking water pathway for radiological exposure, which is in many applications the
only one considered, was not the most important pathway in the system studied in this
exercise. The relative importance of the various exposure pathways was found to vary as
a function of time.

* The timescales for redistribution of activity in the biosphere system studied were found to
be long (in excess of 104 years). Such long timescales indicate the potential importance
of representing transport within the biosphere in system assessment models, rather than
relying on an equilibrium assumption and simply representing the relationship between
flux released from the geosphere and dose received via a given pathway as a time-
independent multiplying factor.

* There was evidence that the nature of the interface between the geosphere and the
biosphere requires careful consideration. Unrealistic specification of the boundary
conditions could lead to inaccurate calculation of concentrations in the biosphere.

The Level 1b report was published in 1993 [NEA PSAG, 1993a].

5.5 LevelS

This purpose of this exercise was to explore approaches to sensitivity analysis in the context
of PSA calculations. The exercise was not concerned with system modelling itself, as in
previous exercises, but with the post-processing of model outputs. A common output data set
was made available to participants, to use if they wished. The model system for study was
the same as that used in the Level E exercise.

Furthermore, although a quantitative set of questions formed part of the exercise, there were
also more general questions about sensitivity analysis, and participants were encouraged to
submit analyses of the common output data set other than those directed at answering the
basic questions, as well as original ideas on the subject of sensitivity analysis in general.

In part, the Level S exercise grew out of a question that arose in many of the preceding
exercises, and which was not easy to resolve. In the earlier exercises, participants were asked
to rank the parameters of the system model in order of importance. The widely varying
responses indicated that the seemingly simple question “which are the most important
parameters of a given system model?” has no unique meaning, and can be answered in
different ways.
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One traditional approach to sensitivity analysis addresses the question of parameter
importance with respect to a reference point in ‘parameter space’. The local variation of a
model output of interest in the vicinity of this point is examined as the parameter values are
changed in some systematic way. Such an approach may be called ‘deterministic’, to contrast
it with the situation in a PSA in which the parameter-value combinations are sampled
randomly from the distributions that characterise their uncertainties.

In the Level S exercise, and indeed in other PSACOIN exercises, many participants
performed sensitivity analyses based on randomly sampled parameter values either by
extracting correlation coefficients between the input parameters and one or more model
outputs (such as dose at a particular time), or by performing regression analyses. These
approaches are closely related and can be thought of as fitting simple functional forms (e.g.
linear) to the variation of the given model output quantity as the input parameters span their
ranges of interest. The fits obtained depend on the parameter distributions. In the special
case of very narrow distributions, a linear form in general provides a good fit, and the
correlation or regression coefficients bears a simple relationship to the gradients that could be
obtained from deterministic sensitivity analysis.

The Level S problem specification and questionnaire encouraged yet another approach to
sensitivity analysis, termed ‘distribution sensitivity analysis’. Here, the focus is on changes
to the characteristics of the whole distribution of output values produced by a PSA, as
changes are made to the input parameter distributions. The motivation for taking such an
approach is as follows. First, safety assessments are concerned with the distribution of
consequence values, or with broad characteristics of this distribution, such as mean and
spread. Second, the parameter distributions are not fixed absolutely, but are potentially
subject to change as site characterisation or other data gathering reduces the uncertainty in
some parameter values. In order to optimise the direction of such experimental work, it is of
interest to estimate how the consequence distribution characteristics, which are the end-points
of a safety assessment, would be affected by changes in the distributions characterising
uncertainty in the parameters.

In the model system for Level S, the 12 uncertain parameters all had either uniform or log-
uniform distributions. The quantitative questions did not suggest consideration of any
departures from this class of shapes, simply shifts and symmetric changes of width. The
model output quantities considered were mean dose at particular times, and maxima of dose
up to particular times. The questions about the sensitivity of the output distributions
concerned the mean of a given dose value, and the spread of the distribution, which was
typically quantified by the variance or standard deviation. In order to allow consideration of
shifted input-parameter distributions, the supplied common data set included randomly
sampled parameter values covering wider distributions than the specified originals. By
appropriate censoring of the data set, samples could be obtained covering the original ranges
and shifted ranges as required.
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The exercise achieved its objective of ensuring the development of new techniques for
sensitivity analysis. Where numerical agreement was to be expected between different
participants’ responses to specific questions, it was generally found. Ranking of variables by
importance in terms of ‘distribution sensitivity’ was satisfactorily consistent, at least for the
most influential parameters.

A major conclusion of the exercise concerned statistical error in the probabilistic sensitivity
analysis. Many of the estimated output quantities cited in the contributions were subject to
standard errors that exceeded the corresponding estimated quantities in size. In other words,
the estimated quantities could not be significantly distinguished from zero. As with all
statistics calculated from PSA results, a reduction of error is to be expected as the number of
sample cases is increased. However, it appeared that a sample size adequate to estimate
mean doses with sufficient accuracy for practical purposes may often be inadequate for
estimation of sensitivities of the kind considered in this exercise. This outcome emphasises
the need for error analysis to accompany all statistical calculations.

One question left outstanding in the Level S exercise is the appropriate way of handling what
is a common characteristic of PSA calculations for waste disposal systems, that many of the
sample consequence values are zero, or effectively so. Correlation or regression analyses
based on ranked output values can be significantly affected by this large number of ‘tied’
values, which is not typical of many other applications of statistical analysis.

However, in its discussions on sensitivity analysis, the Group was made aware of significant
investigations on the subject carried out by associates of the Group who were not participants
in the Level S exercise. For example, Saltelli and co-workers [1990, 1992, 1993] have given
considerable attention to sensitivity analysis in general, and to the problems with tied values
alluded to above. Andres and Hajas [1993] have developed a new method of sensitivity
analysis, known as iterated fractional factorial design (IFFD). IFFD is based, not on the
ensemble of randomly sampled cases provided by a PSA, but on systematically chosen
parameter-value combinations. Its particular merit appears to be in detecting parameter
sensitivities reliably even when the system model has hundreds or even thousands of
uncertain parameters. IFFD is of particular interest for situations where statistical error may
enter strongly into sensitivity measures derived from Monte Carlo PSA calculations.

The Level S report was published in 1993 [NEA PSAG, 1993b].
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56 Level2

Background to undertaking the exercise

The PSACOIN Level 2 exercise was begun in 1992 after a long period of discussion within
the Group regarding its purposes and content. The Group was agreed that the new exercise
should represent a significant advance over previous exercises in its degree of realism, in the
following senses:

* That the physical and chemical processes would be represented more accurately.

e That the models used would be those prepared for use in actual national assessment
calculations.

* That the models and data would represent realistic bodies of experimental and expert-
elicited information regarding a specific site.

In the previous exercises, the specifications had determined many aspects of the system to be
studied - mathematical models needed to represent the system were prescribed, and the
provided data values and distributions were for parameters of particular models. Participants
were then often faced with a choice: they could write new submodels for their codes, to
match the exercise specifications, or they could select submodels that were at hand but
written for a different purpose, and use them despite departures from the conceptualisation
prescribed for the exercise.

By contrast, in a real assessment situation, there is a body of information about the system,
obtained by observations, experiments or other means, and those making the assessment must
choose conceptual and mathematical models according to their understanding of the system,
and assign values to the model parameters in accordance with their understanding of how
these model parameters relate to the measured quantities.

It was particularly in these regards that a greater degree of realism was desired for the Level 2
exercise. Furthermore, by the time the exercise was finally specified, a strong international
interest had arisen in the treatment of uncertainty concerning the choice of conceptual models
for the system and the processes involved. An important aim of the exercise was to
contribute to understanding of the possible impact of conceptual model uncertainty on
assessment results, as compared to the impact from other sources of uncertainty.

The specification of the exercise

In the discussions prior to specifying the Level 2 exercise, the option was considered to base
it on an artificially created data set, for example, following an approach along the lines of that
presented by Mackay [1993] in his work for HMIP. Finally, however, the exercise was based
on real site information, for the WIPP, a proposed repository for defence transuranic waste,
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located in south-eastern New Mexico. As noted in Section 3.2, the SNL/WIPP PA
Department has been conducting iterative performance assessments of the WIPP, and data
and results from the 1991 assessment [WIPP PA Division, 1991] were used in the Level 2
exercise.

The exercise is based on a particular scenario for radionuciide release into the environment
that was important in the 1991 WIPP PA. This scenario involves a hypothetical inadvertent
penetration of the repository and an underlying pressurised brine reservoir, by an exploratory
borehole drilled in the distant future when knowledge of the repository is assumed to have
been lost by society. The pressurised brine moves upward to the waste panel (at a depth of
some 650 m), mixes with the contents of a waste panel, and continues upward through a pre-
existing second borehole. The principal aquifer overlying the proposed repository host rock
is the Culebra Dolomite layer, at a depth of some 250 m. Brine contaminated by
radionuclides from the repository reaching this point would be expected to mix and flow
laterally with the groundwater flowing in the Culebra. This scenario is illustrated
schematically in Figure 6.

Extensive field investigations have provided information about the hydraulic transmissivity
of the Culebra aquifer, and the present-day head distribution. Despite this extensive data
base, the spatial variation of the properties cannot be precisely determined, and this,
combined with uncertainty about the transport behaviour of solutes in groundwater in the
rock, make for an assessment problem involving a rich interplay between different kinds of
uncertainty.

The following specific objectives were set for the Level 2 exercise:

e To assemble model treatments of a single system using a variety of conceptual models,
and thus to explore the effect of conceptual model uncertainty.

e To study progressively the effect of incorporating conceptual model uncertainty into
different components of the system.

e To study, for different performance measures, the relative impact of conceptual model
uncertainty.

e To study methods for the derivation of PDFs for model parameters, and to explore how
this process interacts with the range of conceptual models considered.

Because the potential scope of the exercise was considerably greater than any previous in the
PSACOIN series, the Group decided to conduct Level 2 in stages. Stage 1 would be
concerned with assessing the importance of conceptual model] uncertainty with regard to the
radionuclide transport component of the various modelling systems. To achieve this
restriction, the required conceptual models for components other than transport were
provided. In particular, a fixed conceptual model for groundwater flow and the
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Figure 6 Radionuclide release scenario for the Level 2 exercise. The transport route of

interest involves vertical flow through the repository to the Culebra Dolomite, horizontal transport
through the Culebra to a point 5 km away, where release to the biosphere occurs via withdrawal from
a shallow well.

transmissivity field were provided, even though different spatial distributions and
configurations of aquifer transmissivity could be justified on the basis of the available data.
In addition, the source term for radionuclide release into the aquifer, and a biosphere model,
were provided.

Stage 2 of the exercise would involve consideration of multiple transmissivity fields
consistent with the data. The impact of that uncertainty with uncertainties arising in Stage 1
modelling would be compared. In Stage 3, a wider range of conceptual model uncertainties
would be addressed.

However, the decision to terminate the activities of the PSAG in 1994 meant that only Stage
1 of the Level 2 exercise could be carried out, and the remainder of this description is
therefore restricted to Stage 1.

Participation in the Stage 1 exercise involved calculating groundwater flow in the Culebra
aquifer on the basis of a given fixed transmissivity field and set of pressure-head boundary
conditions (or optionally starting from a flow field pre-calculated by SNL), calculating
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radionuclide transport within the aquifer using the conceptual model of the participant’s
choice, on the basis of a supplied source term, and calculating doses on the basis of the
specified conceptual model. Input data for most model parameters were specified, either as
fixed values or as PDFs, but the same database was used by all participants. No attempt was
made to restrict the choice of conceptual model for radionuclide transport, apart from the
requirement for consistency with the given data.

Participants were asked to compute cumulative releases of radioactivity at specified
boundaries and at specified times up to 10,000 years, release rates, peak releases and peak
doses, and the times of occurrence of the peaks.

The radionuclides whose transport was to be calculated were specified as the members of the
single (simplified) decay chain: 234U — 230Th — 226Ra — 210Pb.

The definition of conceptual model uncertainty

Although there was much interest in conceptual model uncertainty within the PSAG and in
other quarters, there was, at the time of formulating the Level 2 exercise, no universal
agreement regarding the definitions of ‘conceptual model’ or ‘conceptual model uncertainty’.
The following definitions were adopted by the PSAG for use in the Level 2 exercise:

Conceptual Model: A set of qualitative assumptions used to describe a system or
subsystem for a given purpose. At a minimum, these assumptions concern the
geometry and dimensionality of the system, initial and boundary conditions, time
dependence, and the nature of the relevant physical and chemical processes. The
assumptions must be consistent with one another and with existing information within
the context of the given purpose.

Alternative Conceptual Models: Alternative sets of assumptions that describe the same
system for the same purpose, where each set of assumptions is consistent with all
existing system information.

Conceptual Model Uncertainty: The lack of knowledge about the system resulting
from insufficient information to support or refute alternative conceptual models.

These definitions were communicated to the PAAG, and adopted as the working definitions
for the NEA workshop on conceptual modelling uncertainty held in Paris in 1993 [NEA,
1995].

Two things are particularly worthy of note in the above definitions:

e First, conceptual model assumptions are not taken as being restricted to assumptions
about the true nature of the system being modelled. For instance, according to this
definition, groundwater flow in some region could be conceptualised as being two-
dimensional, even though variations in the third dimension may exist. Other definition
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schemes would be possible, such as classifying choices like dimensionality under a
separate heading of numerical approximations.

* Second, the assumptions that comprise a conceptual model are ‘for a given purpose’.
Assumptions could be consistent with the existing information when they are to be used
in modelling for one given purpose whereas the same assumptions could be inadmissible
in the context of a different purpose. For instance, an assumption of constant conditions
may be valid for the purpose of modelling behaviour for one thousand years, but
inadmissible for the purpose of modelling for a million years.

Results of Level 2 Stage 1

Six organisations participated in the exercise. Some participants submitted more than one set
of results, using different models for radionuclide transport. The most significant elements of
difference between participants’ choices of conceptual model for transport of radionuclides
were dimensionality (one or two dimensions), whether fractures in the rock were explicitly
taken into account, or an effective porous medium representation used, whether the transport
was considered to be restricted to the fractures, or to involve diffusive transfers into and out
of the rock matrix between the fractures, and whether retardation by sorption was included.

The problem specification called for several measures of performance to be evaluated. Those
relating to a particular time were restricted to times up to 10,000 years. Peak release rates
and doses, and times of peak, were called for, but comparisons were difficult because
participants’ calculations were terminated at different upper time limits. It was clear that the
peak release rates at most boundaries were likely to occur long after 10,000 years when
models were used that allowed access of radionuclides to the full porosity.

Some participants initially ran only a small number of sample cases in their PSA calculations
— as few as 35. In analysing the results, it became evident that this was inadequate for
consequence measures used in the exercise. Participants using one-dimensional models were
able easily to provide many hundreds of sample runs, whereas the greater complexity of two-
dimensional models made this difficult for some participants. No definite principle was
found for determining an adequate sample size to obtain convergence for the mean of a given
output quantity. It is clear that the required sample size for convergence depends on the
output quantity concerned, and that simple rules of thumb, relating sample size to the number
of model parameters, cannot have universal validity.

The results submitted by participants varied considerably - some by orders of magnitude - for
all consequence measures (cumulative releases, release rates, doses). However, for many
transport model conceptualisations, peak release rates and doses occurred later than 10,000
years, the time cut-off for this exercise, and release rates and doses were very small (or zero)
in the initial 10,000 years. In such cases, intercomparison of results after only 10,000 years
may overstate essential differences between models.
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The feature of the different conceptual models contributing most strongly to the differences
in results was judged to be the assumed amount of accessible porosity. The porosity
contributed by the fractures in the rock is much smaller than the total including the rock
matrix. Models that allowed for the radionuclides entering the matrix porosity, either
through explicit representation or by use of a porous-medium model in which the assumed
porosity value included the matrix contribution, gave much later releases to the more distant
boundaries.

Other factors must also have contributed to the differences in the results, but the information
supplied by the participants was insufficient to enable a full understanding to be obtained.
The use of different numerical approximations is assumed to be a likely cause of most of the
unexplained discrepancies.

Conclusions and lessons from Level 2 Stage 1

The exercise succeeded in assembling a variety of alternative model treatments for
radionuclide transport, none of which were judged to be inconsistent with the information
provided in the problem specification. In a real assessment exercise, it may be possible to
assemble information that could limit the range of conceptual models to a much greater
degree, and the context of the modelling might be more tightly prescribed. Indeed, were such
a very wide range of results to be obtained from alternative conceptual models in a real
assessment, it is likely that efforts to reduce the range of conceptual model uncertainty would
have a high priority3.

The issue of alternative conceptual models being admissible in the context of a given purpose
was highlighted by participants who employed fracture-only transport models, in order
intentionally to give a conservative treatment of the uncertainties. As a result, very rapid
releases were calculated. Such an approach was considered to be acceptable within the
purpose of the exercise. However, it is difficult to address questions about the relative
importance of conceptual modelling uncertainty and other sources of uncertainty if
conservative and realistic modelling approaches are both to be considered equally admissible.
If an arbitrary degree of conservatism is admitted, it is possible to arrive at an almost
unlimited range of answers for many performance measures.

Complex exercises require significant resources to be committed by participating
organisations. The earlier PSACOIN exercises could be done well by individual modellers
working relatively independently. The level of complexity of exercises such as Level 2 is
such as to require teams of participants, with a variety of expertise, covering several of the
areas required for a national assessment. This aspect of the Level 2 exercise was partly

3 Indeed, later experimental work at the WIPP focused on acheiving better understanding of the physical and

chemical retardation properities of the Culebra.
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responsible for the diminishing number of groups that were able to participate actively in the
PSAG as Level 2 became the principal focus.

International modelling exercises always require more than one round of analysis and
evaluation of results if they are to achieve a successful completion. The PSACOIN Level 2
exercise suffered in this regard from the termination of the PSAG’s activities. The Level 2
Stage 1 results showed some features that could not be adequately explained. This provides a
lesson, not only for the conduct of international code comparison exercises: performance
assessments should be conducted iteratively, and they should receive external review, to help
identify potential errors and important removable uncertainties in the assessment results.
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6. Summary of Achievements of the PSAG

By sponsoring the existence and activities of the PSAG, the NEA has provided important and
timely support for a number of OECD member countries in a period in which they were
seeking to develop a capability to conduct safety assessments for potential and actual
radioactive waste repositories. The whole process of developing concepts for the disposal of
radioactive waste, identifying and evaluating potential disposal sites, and assessing the long-
term radiological safety of specific repositories, has aroused strong interest from a variety of
parties, and will continue to be subject to intense and searching scrutiny. In this context,
most countries have seen as very valuable the search for international consensus with regard
to philosophy and methodology, and the possibility to enhance confidence in their assessment
tools by international co-operation and mutual review.

The major goals of the PSAG have been to promote the exchange of information, ideas and
computational tools between participating organisations, and to help to build confidence in
PSA methodology in general, and in the PSA codes used by participants in particular.

Information exchange

The effective exchange of information was encouraged by drawing together from many
countries experts in a highly specialised field. The PSAG membership has always included
many who were actively engaged in the development of PSA codes, and who were therefore
intimately familiar with the practical details of implementing the PSA methodology. The
discussions of the PSAG have thus always been strongly grounded in the practicalities of
applying PSA. The PSAG was a group where a complex methodology was applied in
practice, not simply talked about.

The PSAG has also benefited from a significant presence of those who were involved in
shaping the direction of national programmes for assessing real waste disposal repositories.
The Group therefore not only constituted a valuable source of first-hand information, but also
influenced the formulation of national approaches to repository assessment. PSAG Member
countries were at different stages in their development of safety assessment methodology and,
for some groups, the PSAG was the starting point for their developments. Participation in the
PSAG has come from more than ten OECD Member countries, as well as from the European
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Commission and the International Atomic Energy Agency. The work of the PSAG has
continually been reviewed by the NEA Performance Assessment Advisory Group.

The activities involving information exchange and technical discussion have covered wide
ground, including the design of PSA codes, development of specific submodels for PSA
codes, the theory of statistical convergence, the fundamental basis for treating uncertainty in
probabilistic terms, reduction of research codes to practical assessment tools, sensitivity
analysis, and elicitation of expert opinion.

Code intercomparisons

The goal of the PSAG to help build confidence in the computational tools used by Member
groups in safety assessments was achieved principally through the PSACOIN
intercomparison exercises. These were conducted in a series of ‘Levels’, designed first to test
the basic framework of PSA codes, and then to move progressively towards greater realism,
in the sense of studying test cases similar to real assessment problems, and in using models
drawn from those actually being used in national programmes.

Levels 0 and E tested the executive functions of the participating PSA codes, including
random generation of parameter values from specified probability distributions, and the
statistical analysis of results. Practical attention to these questions brought to light the need
to select effective ways of presenting PSA results, and the difficulties of giving precise
meaning to the question of which model parameters are the most important.

Levels 1a and 1b represented deep and shallow disposal systems in a more realistic way,
giving some freedom to participants to use submodels developed for use in their national
programmes. These exercises, by raising the question of how wide a range of different
models could validly be applied to a particular problem, led to Level 2, in which uncertainty
associated with model choice began to be more fully examined. Level 1b also gave a
valuable opportunity for members to gain experience in the incorporation of some complexity
into the biosphere models used within a PSA calculation.

A general result of Levels 0, E, 1a and 1b was that the results from the different codes were
substantially in agreement, where such agreement could be expected in the light of the
models being used.

The Level S exercise specifically addressed methods for sensitivity analysis. It differed from
the other PSACOIN exercises in concentrating more on methodology than on comparison of
results obtained using different codes applied to the same problem. The published report
contained articles contributed by participants, and some of these articles present new
approaches and techniques for sensitivity analysis.

Finally, Level 2 represented a major increase in complexity and realism, attempting to
address the question of the relative importance of parameter-value uncertainty and
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uncertainty with regard to choice of conceptual and mathematical models where alternatives
exist that cannot be ruled out on the basis of available information.

Final status

At the time of the final PSAG meeting, key technical issues in PSA had been discussed and
documented by the Group, and five code intercomparison exercises and a Brochure on PSA
had been published. The Level 2 exercise was still incomplete (and thus has not been
published). Further international attention to these matters may be achieved in the future
through other means. At this stage, many of the national groups that participated in the
PSAG are actively engaged in preparing or defending safety cases for proposed repository
developments, or in the use of PSA methods to underpin the regulatory evaluation of such
safety cases. Others are continuing in the process of justifying disposal concepts and
examining alternative disposal sites. The work of the PSAG has created a set of reports on
technical issues that will continue to be relevant to these activities, and the published
PSACOIN exercise results provide a set of benchmark tests that can be used as part of the
verification of new PSA codes.
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7. Issues Deserving Further Attention

The PSAG has had a decade of fruitful work. The Group’s remit was not to answer
completely all questions regarding PSA and its application to radioactive waste disposal, and
it has not done so. The way forward for international co-operation in this technical area is
not yet clear. This Chapter provides a brief account of some of the issues that may be worthy
of further international work.

7.1 Issues in the Fundamentals of the Treatment of Uncertainty

The validity and merits of the probabilistic approach

Most countries involved in the use of nuclear power have established regulatory guidelines
for the evaluation of schemes for disposal of radioactive wastes. However, few regulatory
frameworks are explicit about the nature of uncertainty, what language is appropriate to
discuss it, and the way in which uncertainty should be taken into account in assessments.

The work of the PSAG has been based on probabilistic approaches to treating uncertainty,
under the assumption that the theory of probability provides an appropriate basis for
quantifying uncertainties and for combining uncertainties. Nevertheless, the PSAG has been
open to the debate on the relative merits of other approaches to treatment of uncertainty, and
Fuzzy Set theory in particular has been discussed (see Chapter 4). One issue discussed by the
PSAG concerns the appropriateness of using probabilistic language when eliciting expert
judgements about parameter values when there is a marked lack of direct experimental
evidence. Thus, the PSAG has also debated the idea that different types of uncertainty should
be distinguished, and handled differently. The PSAG did not reach definitive views in any of
these debates.

Some countries are not currently using PSA in preparing assessments for proposed waste
repositories. Rather, deterministic analyses are made, often using a combination of ‘best-
estimates’ and conservatism as the means of dealing with uncertainty. A conservative
analysis deliberately selects models and parameter values in a way that should tend to
overestimate risks or other similar performance measures. An advantage of such approaches
is that results can be easier to communicate and understand.
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On the other hand, models in some PSA codes have a tendency to be simpler than in purely
deterministic approaches since a large number of computer runs have to be performed. The
use of generally simpler models in PSA may require conservative assumptions to be made
within the analysis.

The use of conservative approaches, whether within a purely deterministic framework or as
part of a PSA, is respectable, but open to some concerns. For example, in a system with
many components and many sources of uncertainties, many conservative assumptions may
have to be made. In combination, they may lead to prediction of unacceptable system
performance, whereas an assessment that was realistic at every turn may well have predicted
acceptable performance. Furthermore, the calculated impacts may poorly represent the
expected performance of the disposal system, making the model results poorly suited as a
basis for optimising design, focusing data collection programmes, or improving the safety
and cost-effectiveness of the disposal system. '

In attempting to move away from conservatism, a strength of the PSA approach is that, in
principle, it allows all uncertainties that can be characterised by probabilities to be considered
within a coherent, unified framework, and ensures systematic searching of all combinations
of parameter values.

Further consideration at international level on the relative merits and roles of deterministic
and probabilistic assessment approaches within a safety case would be valuable.

Can PSA only handle some types of uncertainty?

It is sometimes asserted that PSA is a tool for dealing with one type of uncertainty, that
associated with the values of model parameters, whereas other types of uncertainty, such as
uncertainty in model structure, cannot be dealt with using PSA. This assertion is open to
debate, and it is a matter still to be determined exactly which types of uncertainty can, or
should, be treated in this way.

One thing is certain: if an aspect of uncertainty about the system being studied cannot be
quantified in probabilistic terms, it cannot be treated by a probabilistic assessment method.
For instance, in any assessment, it is possible that human errors have been made in
assembling the data, in reporting the results, or in the writing of the computer code. But it
appears to be impossible to assign a probability distribution to the magnitude of any such
undetected errors, so it is impossible to deduce a quantitative estimate of the impact of such
outright errors on an assessment result.

It is more difficult to decide about the applicability of PSA to the class of uncertainty
associated with the possibility of using several alternative models to represent the same
phenomena. Conceptual model uncertainty (CMU) was at the centre of the concerns of the
PSACOIN Level 2 exercise, but that exercise was not able to draw firm conclusions about the
relative importance of CMU and other classes of uncertainty, nor about the amenability of
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CMU to treatment within the framework of a PSA calculation. CMU was also the subject of
a recent NEA Workshop [NEA, 1995], but again, the question of the applicability of PSA
was not settled.

Sometimes, the existence of a range of applicable models, none of which can be ruled out by
the available evidence, can be represented in parametric terms. For instance, for transport of
radionuclides by groundwater flowing in a fractured rock, there may be uncertainty as to
whether the rock matrix between the fractures is accessible to the radionuclides, giving the
possibility of greatly retarding their transport. A model that includes diffusion into the rock
matrix and a model based on transport only in the fractures may be considered as alternative
models, with some uncertainty as to which is applicable in a particular medium. However, it
is perfectly possible to construct a model that represents both fracture transport and rock-
matrix diffusion, including one or more parameters that affect the ease of access of solutes
from the fractures into the matrix. Assigning PDFs to these parameters could have a similar
effect to attributing probabilities to the two alternative models. Thus, one outlook, in which
the analysis was treated as a single model with parameter uncertainty, could be considered
equivalent to another outlook, in which conceptual model uncertainty was said to exist.

In summary, PSA is capable, from a computational point of view, of handling any type of
uncertainty that can be characterised by probabilities. Casting uncertainties in parametric
form is straightforward: even choices between apparently unrelated alternative
representations can be cast mathematically in terms of a discrete probability distribution for
an integer that selects between the alternatives. The difficulty lies in attributing the
probability distributions in a way that is defensible.

Risk dilution

In assigning PDFs to describe the uncertainty in the parameters in a PSA, there may be a
tendency to overestimate the uncertainty, that is, to overestimate the width of the parameter
distributions. The term ‘risk dilution’ is used to describe a situation in which an increase in
the uncertainty of the input parameters of a model (while holding the mean of the
distributions constant) leads to a decrease in the mean of an output quantity. While this
output quantity may be a risk, the concept could also apply to other possible performance
measures. If overestimation of uncertainty results in mean consequences being reduced, the
unfortunate effect is that what appears to be a conservative step (overstating the degree of
uncertainty) leads to an overoptimistic assessment of mean system performance.

One circumstance in which risk dilution is a concern is when the performance measure in
question (for instance individual dose rate) has a peak in time, and the time of the peak is
affected by one or more of the uncertain parameters. Averaging over the possible values of
the model inputs amounts to averaging over alternative situations in which the peak value of
the performance measure occurs at different times. At any given time, the mean value of the
performance measure is obtained by averaging cases that lead to the peak occurring at around
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that time with others for which the consequence is relatively small. Clearly, the mean value
is less than the maximum value at any given time. The wider the distribution of the
parameters, the wider the range of peak times, and the more the averaging process mixes in
relatively small values. Hence the term ‘dilution’.

Guarding against unwarranted risk dilution is part of the process of developing PDFs for
radioactive waste disposal PSAs. It would be of interest to reconsider the potential
importance of risk dilution as an issue in PSA if decisions were based on measures of system
performance other than ‘mean’ values (for example, particular percentile values could be
used as an alternative).

Time dependence and other model complexities

All the model systems studied in PSACOIN exercises calculated outputs that were functions
of time. However, the nature of the mathematical models was unchanging with time, and the
boundary conditions were constant. The same is true of the majority of practical applications
of PSA to waste repository safety that have been performed around the world to date. The
work of HMIP in the UK is an exception in this regard, providing the first full-scale
demonstrations of performance assessment in which probabilistic techniques have been used
to simulate time-varying boundary conditions [e.g., Sumerling (Ed.), 1992].

The desire for accuracy tends to imply that known time-dependent aspects of the system that
could have a significant effect on calculated system performance should be represented in the
model. However, models with time-dependent boundary conditions are harder to implement
than those with constant ones, and the problem of specifying parameter distributions when
the parameters can be general functions of time deserves more study. In the face of such
difficulties, some argue that explicit treatment of time dependence should be avoided if
possible.

Closely related to the question of how time dependency is treated in PSA is the methodology
used for forming and defining ‘scenarios’ for consequence analysis. There has been a good
deal of discussion within the PSAG and elsewhere concerning the relative benefits of an all-
embracing approach to system simulation versus the development and representation of a
relatively small number of scenarios to describe the future evolution of the disposal system.
In both approaches, all features, events and processes (FEPs) of concern are identified. In
system simulation, as advocated most forcefully by HMIP in the UK, all such FEPs are
combined into an overall model of the evolving disposal system and its environment.
Probabilistic techniques are used to account for FEPs of uncertain occurrence or timing that
cannot be explicitly modelled. For example, in the HMIP demonstration of this approach,
changes in groundwater flow resulting from climate change are explicitly modelled, although
the changes in climate are accounted for probabilistically. In the scenario approach, one or
more potentially disruptive FEPs is explicitly kept outside the main ‘base case’ assessment
model. Typically, these FEPs are of uncertain occurrence or timing, and their consequence is

58



assessed by hypothesising and modelling a series of discrete futures. Relations between these
scenario-forming events and processes are not always explicitly considered; rather, each
discrete future may be assigned a ‘weight’ for the purpose of combining overall results (e.g.,
into CCDFs).

There is often confusion about the essential differences between scenario-based and
simulation-based approaches. The distinction between the two approaches is increasingly
seen as more terminological than real. All scenario-based approaches rely on simulations of
disposal system performance using calculational models. The environmental simulation
approach, as advocated by HMIP, can be considered a variant of the scenario approach, in
which several additional events and processes - that is, those associated with natural climate
change - are coupled in an overall system assessment model. Whether the scenario or the
simulation approach is used, the objective is to produce a model of long-term system
behaviour. In both approaches, a complete conceptual model of the system is developed and,
in practice, subjective judgements, scoping calculations, and available computational
capabilities are used to decide which processes and interactions should be included in system-
level consequence analyses.

In principle, given access to the same information base and the same experts, the results of a
scenario-based approach should be comparable to those from a simulation model. Limited
attempts at comparison of the two approaches have been made within PSA [e.g., Sumerling
(Ed.), 1992], but a convincing argument that use of the two approaches would lead to
fundamentally different assessment conclusions is yet to be made. The question of when it is
necessary to model time-dependencies explicitly, when they can be ignored, and when time-
invariant scenarios can be used as a substitute, will need to be addressed in the context of the
purpose and requirements of particular national assessments. However, further work at
international level may help to inform the response (see next section).

As proposed repository sites are studied, increasing levels of site-specific information are
becoming available. Furthermore, computer power is continuing to increase, giving the
possibility of using more and more complex models as part of PSA calculations. This applies
not only to incorporation of time-dependent effects, but also to the treatment of spatial
variation, possibly in three dimensions, in flow and transport submodels. Some within the
PSAG have questioned whether this trend would necessarily represent a real gain. Will it
increase confidence in the results, or rather tend to obscure the dominant features of the
system on which safety relies? Is it possible that the incorporation of more detail, with the
concomitant need to specify more parameters, could lead to an increase in the overall
uncertainty in the calculated performance measures? If so, is this appropriate? Again,
although such questions will need to be addressed in the context of the purpose and
requirements of particular national assessments, further work at international level could help
inform the response.
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7.2 Issues in PSA Methodology

Convergence

The issue of the convergence of PSA results was referred to briefly in the discussion of
statistical sampling schemes in Chapter 4. This issue is distinct from the more general issue
of numerical convergence, which is relevant to all numerical modelling, whether conducted
deterministically or within a Monte Carlo framework. Convergence of PSA results is an
important issue because the results produced by an application of PSA must be reliable, yet
the method by its nature involves repeated calculations using numerical models, and these
can consume much computer time, the more so as the models are made more realistic. In
many applications of PSA to date, the sample sizes used have been determined mostly by
intuition, operating within constraints of expense, or elapsed time, associated with computer
execution time.

Achieving convergence, and having confidence in the fact, may be more difficult in PSA
applied to waste disposal systems than in many other applications of Monte Carlo simulation,
because of the skewed distributions of output values that seem to arise. If, for instance, a
value that is at least 100 times bigger than the mean occurs with a probability of 1 in 1000, a
sample size of 100 cases would have only one chance in ten of encountering such an extreme
value. Yet if such an extreme value did arise, it would contribute to the estimated mean at
least ten times more strongly than it should. The accuracy of the mean estimation would thus
be very poor with a sample size of 100; a sample size of several thousand would be more
appropriate.

In the PSACOIN Level E exercise, a scheme for testing convergence was examined, based on
dividing the sample results up into batches, and looking at the distribution of the means of the
batches. The results obtained in this exercise gave no grounds for believing in the efficacy of
this test scheme.

The PSA method makes it possible to accompany estimates of means or other statistics with a
measure of the estimation accuracy. However, such error analysis is based on the variability
observed in the sample cases that were examined, and there is always some doubt that the
error estimate may be smaller than is really justified. To be assured of convergence, some
information about the shape of the consequence distribution is required, independent of the
evidence provided empirically by the samples taken so far. Automatic ‘stopping rules’
should therefore be viewed with caution.

It is likely that the number of sample cases required for convergence and for attaining a given
estimation accuracy depend on the nature of the output quantity. For instance, the cumulative
release to the surface of a parent radionuclide cannot possibly exceed the disposed inventory.
There is therefore no question of the upper tail of the distribution extending beyond this limit.
For this reason, the mean of a cumulative release may converge much more rapidly than, say,
the mean release rate at a certain time. It appears, however, that no systematic studies have
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yet been made on the relationship between convergence and the choice of performance
measure.

Convergence is also an issue for sensitivity analysis. A conclusion of the PSACOIN Level S
exercise was that, for a given number of samples, measures of parameter sensitivity can be
much further from convergence than the means calculated as part of uncertainty analysis.
This is because parameter sensitivities are likely to depend significantly on the precise shape
of the output distribution, and this, therefore, may need to be shown to have converged
statistically in order to have confidence in measures of parameter sensitivity.

Parameter correlation

The question of correlation among the uncertain parameters of a model to which PSA is
applied has only briefly been considered by the PSAG. The matters requiring attention lie in
two areas. First, it is difficult to communicate the meaning of correlation where subjective
uncertainty is concerned. In the case of two or more stochastic quantities that may be
sampled by repeated observations, the joint probability distribution may be interpreted in
frequentist terms. If the observation of a large value for one variable is frequently
accompanied by the observation of a large value for another variable, the two can be said to
have a positive correlation. However, for most of the uncertain parameters of models of the
long-term performance of waste disposal systems, there is no question of repeated
observations, although some of the parameters may relate to quantities, such as rock
properties, that in principle could be measured at different locations or times. Rather, the
PDF attributed to each parameter represents a degree of belief on the part of experts
(conditioned perhaps by experimental observations of measurable quantities) in the
appropriateness of using different values of that parameter in the assessment. Correlation
between two parameters then has to be expressed in terms such as the following: “A positive
correlation could be said to exist if experts believed that the revision of one parameter’s
value, to lie at the high end of that parameter’s PDF, would result in the value of a second
parameter being revised upwards.”

The second issue concerning parameter correlation is that of specifying the correlation
quantitatively, and implementing the correlation in the Monte Carlo sampling. It may appear
to be easy to elicit an expert judgement of the correlation coefficient applying between two
parameters, but simply specifying the correlation coefficient is insufficient in general to
specify the full joint PDF, which gives the probability density in the neighbourhood of any
given pair of values.4 Discussions on this subject within the PSAG have revealed that some
members have tried a scheme in which tables of sampled parameter values have their entries
permuted at random, until the correlation coefficients reach the required values. However,

4 Multivariate Normal distributions provide a special case in which correlation coefficients suffice to specify
the full details of the covariation.

61



this is a somewhat arbitrary, and generally non-unique, basis for achieving the required
degree of correlation.

It would appear preferable, when possible, to discover the physical basis for belief in a
correlation between two parameters. Usually, it means that they both depend on another set
of variables, involved in the fundamental processes underlying the meaning of the
parameters. If those underlying variables can reasonably be attributed independent
(uncorrelated) distributions, and if analytic expressions can be stated relating these
independent variables to the model parameters, then those parameters will become dependent
random quantities that in general will be correlated.

Types of system model

The model systems studied in the PSACOIN exercises, and much of the experience of
applying PSA that has been discussed by PSAG members, have been concerned with the
groundwater pathway for transport of radionuclides from a repository to the accessible
environment. A notable exception is the work of SNL in the US for the WIPP, which has
considered both two-phase flow and human intrusion releases [WIPP PA Division 1991;
WIPP PA Department, 1992]. On the basis of the SNL work, there do not appear to be
particular problems associated with applying PSA to models of other major pathways, but the
PSAG did not as a Group explore the treatment of alternative release pathways in PSA. For
example, it is possible that convergence for PSA applied to human intrusion events may be
harder to obtain than for PSAs that consider groundwater releases alone. This is because the
human intrusion pathway may be dominated by the effects of intrusion events that are
relatively short-lived, and occur at unpredictable intervals, whereas groundwater-mediated
transport gives rise to long-lasting releases, for which uncertainty in the parameters results in
relatively minor variations in timing and magnitude of the consequences.

7.3 Issues in the Application of PSA
Visualisation of model results in the presence of uncertainty

The concept of uncertainty is difficult to communicate, especially when the quantities
calculated are functions of space and time. Communication of assessment results is an issue
no matter what assessment approach is adopted. However, the issue is made more difficult
when statistical concepts need to be communicated to a broad audience. PSAG members
have expressed the view that further advances in the art of communicating such results must
be possible but, although discussed, this has not been a focus of work within the Group.

Termination of the data-gathering/assessment cycle

Typically, PSA is applied as part of an iterative process of site characterisation and
performance assessment. For example, an initial characterisation of a proposed disposal site
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may be followed by a preliminary PSA. Further research and data collection may follow,
aimed at providing less uncertain values for model parameters, and providing greater
confidence in the choice of models and in the understanding of the site. Using the
information thus gathered, a refined assessment will be carried out. However, this cycle
could continue indefinitely, in a continual drive to reduce remaining uncertainties. Although
reduced uncertainty may always be desirable, there remains the need to identify the point at
which sufficient assurance exists that decisions can be taken to permit construction of the
waste repository, emplacement of waste and, finally, repository closure.

The PSA method can be used to help close out the decision process described above in two
ways. First, as discussed in Chapter 2, a PSA result such as a mean dose can be provided
with associated measures of estimation uncertainty, such as 95% confidence limits. These
measures help to ensure that uncertainty associated with the Monte Carlo sampling itself is
not dominating the overall uncertainty in the PSA. Second, as discussed in Section 5.5,
sensitivity analysis can help identify the model parameters whose uncertainty most
contributes to the uncertainty in the calculated system performance, and can quantify the
potential reduction in overall uncertainty if the model parameters were better characterised.
Similar kinds of analysis can be brought to bear regarding uncertainties over the choice of
conceptual or mathematical models.

Closure of the decision process becomes clearer where decision makers can agree standards
in advance specifying the degree of remaining uncertainty that is acceptable at any stage of
the decision process. This does not appear to be difficult in principle, and forms an integral
part of regulations in some countries [e.g., US EPA, 1993; 1996]. More troublesome for the
decision process may be the existence of uncertainties that are difficult to quantify, such as
the concern that the analysts have not accounted in the PSA for some potentially important
site-specific feature, event or process.

7.4 Recommendations

The NEA could usefully follow up the PSAG work that has been described by focusing on
issues mentioned in this Chapter. Also, more recent developments in PSA could be
examined. The issues highlighted here include:

e How to ensure understanding of the process of PSA, and of its results by the various
stakeholders in the decision process.

e How to ensure traceability of information flow throughout the assessment process.

e The treatment of conceptual model uncertainty, and whether it is generally reducible to
parametric uncertainty.

¢ The treatment of time dependency in PSA.
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e The treatment of correlated input parameters.
e Statistical convergence, and sensitivity analysis.

e Re-evaluation of the issue of risk dilution in light of evolving regulatory considerations
on the definition of risk.

The emphasis within the PSAG was on the development and application of tools and
techniques for the estimation of radiological performance under uncertainty, regardless of the
purpose of such analyses. However, a regulator and a proponent will perform PSAs for
fundamentally different reasons. For example, a proponent may conduct a PSA to support a
safety case on repository development, and a regulator may use PSA independently to help
evaluate such a case. The question of how best to employ PSA in the context of regulatory
review may become an increasingly important issue as more repository safety cases that
incorporate PSA are submitted for formal regulatory review.

PSA as such should not be regarded as an activity that is purely code related, and concerned
only with simple models. Rather, it has been used by PSAG members to encourage a
comprehensive and traceable account of assumptions and decisions made in the presence of
uncertainty at all stages of preparation of a safety case (and its corresponding regulatory
review), whether or not a simplified computational model is derived. The NEA has already
encouraged new initiatives focusing on the entire procedure of building a safety case, from
collection, collation and interpretation of data, through detailed modelling and bounding
estimates of performance, through full Monte Carlo simulation where considered necessary,
and further work devoting to clarifying the relationship between the use of ‘determinisitic’
and ‘probabilistic’ modelling approaches would be desirable.

Finally, international exercises to compare realistic approaches to performance assessment, as
proposed originally for the PSACOIN Level 2 exercise, may require resources and
commitment on a scale approaching that of a real assessment. The effect of differing
amounts of site information on the performance estimate is a key concern in view of the very
large resources involved in such investigations and the subsequent interpretation of the data.
One purpose of the PSACOIN Level 2 exercise was to examine this problem. The Level 2
specification could be usefully re-examined to see if a new international exercise could be of
mutual benefit.
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