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FOREWORD

Foreword

Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party
on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific
activities regarding various existing and advanced nuclear fuel cycles, including
advanced reactor systems, associated chemistry and flow sheets, development and
performance of fuel and materials, and accelerators and spallation targets. The WPFC has
different Expert Groups to cover a wide range of scientific fields in the nuclear fuel cycle.

The Expert Group on Chemical Partitioning was created in 2001 to (1) perform a
thorough technical assessment of separations processes in application to a broad set of
partitioning and transmutation (P&T) operating scenarios and (2) identify important
research, development and demonstration necessary to bring preferred technologies to a
deployable stage and (3) recommend collaborative international efforts to further
technological development.

This report summarises recent studies on curium separation and management in
France, Japan and USA.
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EXECUTIVE SUMMARY

Executive Summary

Curium is produced in thermal-spectrum irradiation of nuclear fuel in Light Water
Reactors (LWR) used in many countries for the generation of electricity. The production
path begins with #°Pu, produced by neutron capture of ?*U, and then, continues through
a series of transmutation neutron capture and beta decay reactions, as illustrated in the
diagram below:

246Cm 248Cm 2498k 250Cf 252Cf

239py upy  4py  M2py 43Py MAm 2Am 2%4Cm 245Cm | 2“7Cm| 2“9Cm| 25°Bk| B1Gf
0.3%
10% I
36% 0.4%
o Fission Fission
%% Fission Products Products
Products
Fission
Products
29py — 242py 3n, 90% fission loss
2Py —> 24Cm 2n,~1% fission loss
MCm —> 22Cf 8n,~8.7% fission/decay loss
®20Cf —> BFm 5n,~0.3% fission/decay loss

Fission
Products

Transplutonium-element yield and fission loss during thermal neutron irradiation of plutonium

As indicated, the amount of curium produced is relatively small because many of the
precursor isotopes undergo fission reactions such that only about 10% of the **Pu is
converted into curium. Moreover, the odd isotopes of curium (**Cm and *’Cm) that are
produced are largely destroyed by fission. The net production of curium in current LWR
used fuels with burn-up ranging from 45-55 GWd/MT, is <0.01%. However, recycled used
fuels can contain substantially increased (>10 fold) amounts of curium.

The curium isotopes, ?**Cm and ***Cm, are the dominant mass of the curium produced,
with typical isotopic portions of 85% and 15%, respectively. Even though the mass of
curium produced in used nuclear fuels is small, the **Cm is the major source of
spontaneous fission neutrons which requires special shielding and handling provisions.
In addition, **Cm (half-life = 18.1 years) is a significant contributor to decay heat
emission for several decades after irradiation. Furthermore, after decay for longer periods,
the **Cm (half-life = 8265 years) becomes the predominant isotopic mass, leading to
potential safeguards concerns.
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EXECUTIVE SUMMARY

Curium is closely associated with americium in irradiated fuels because of their
chemical similarity with regard to potential separation requirements, and because
americium also requires special shielding and handling requirements due to its gamma
radiation emission. Americium is produced in greater mass than curium in irradiated
nuclear fuels and the mass ratio can grow exponentially with decay time because of the
simultaneous decay of **Cm and in-growth of **Am from decay of ?*'Pu (half life = 14.4
years).

For these reasons, curium management is challenging. Countries that are now
engaged in or planning future fuel recycle operations, are considering methods to
manage the curium produced and minimise the shielding and handling requirements, as
well as the reprocessing requirements for separation of curium from americium France,
Japan, and the USA have begun curium management studies. Curium management
methods under consideration include (1) separation of curium from americium and
storage of curium for several decades to allow **Cm to decay substantially to **°Pu, while
moving ahead to recycle americium; (2) recycling of americium and curium without
separation; and (3) waiting several decades to reprocess used nuclear fuels, allowing
decay minimisation of curium emissions and the requirement for separation of curium
from americium, and allowing an alteration of the subsequent transmutation path to
reduce the production of curium in recycled used fuels.

Curium management in France, Japan and the USA

In this report, recent curium management studies in France, Japan, and the USA have
been described. The French studies included scenarios that compared the recycle of all
minor actinides (neptunium, americium, and curium) with the recycle of only neptunium
and americium in radial blankets of sodium-cooled fast reactors (SFR). In the latter
scenario, curium is separated from americium during used fuel reprocessing and stored
for 5000 years to allow ***Cm to decay to *Pu which is then recycled. Even though the
studies showed that the recycle of all MAs provides the most efficient decreases of
radiotoxic inventory and decay heat in the high level waste, the removal and decay
storage of curium allows overall reductions while minimising the neutron shielding and
handling requirements during fuel recycle irradiations. Thus, French separations studies
have been directed toward americium separation from curium and fission products in a
single process. The development of the ExAm process can accomplish the needed
recovery of americium.

The Japanese studies compare Minor Actinide (MA) isotope production in (1) low-
enriched uranium LWR used fuel, (2) in U-Pu mixed oxide (MOX) used fuel, (3) in Fast
Breeder Reactor (FBR) MOX used fuel, and (4) in FBR U-Transuranium (TRU) MOX used
fuel. The studies show the effects of increasing decay time following irradiation on decay
heat generation from both fission products and actinide isotopes. The decay time effects
of decreasing ***Cm and fission product inventory with a simultaneous increase in the
2IAm inventory are shown. Also, the Japanese studies describe curium separation
process development by means of extraction chromatography methods.

The USA studies describe the radioactive decay effects and indications on mass, heat,
and radio toxicity amounts and ratios of curium and americium. Also shown is the
decreased curium production during transmutation of actinides after several decades of
decay storage, prior to used fuel reprocessing. Curium inventory is compared for recycle
scenarios using LWRs or fast reactors with either 10-year or 35-year fuel cycles.

CURIUM MANAGEMENT STUDIES IN FRANCE, JAPAN AND USA, © OECD 2012 9



FRANCE

Chapter 1: France

1.1 Introduction

The French CEA (Commissariat a 1'énergie atomique et aux énergies alternatives) is
currently studying different solutions to manage plutonium and minor actinides within
the framework of the French law on waste management. Therefore, scenario and process
development studies are in progress in France to assess different options of the
separation and transmutation of plutonium and minor actinides in the French fleet of
reactors.

The option chosen for the generation IV reactors in France is the Sodium cooled Fast
Reactor (SFR). Scenarios studies evaluate the consequences of waste management on the
SFR deployment from the plutonium inventory point of view, the possibility to transmute
minor actinides, the capacity of cycle facilities and the waste production.

The transmutation of minor actinides can be obtained in two different modes: minor
actinides can be directly mixed with standard fuel (homogeneous mode) or separated
from the fuel and added in radial blankets (heterogeneous mode). Only the
heterogeneous mode will be considered here.

Among the minor actinides, curium represents a special challenge as it contains
radioisotopes that are high neutron emitters and have a high thermal capacity. These
issues impose many constraints on fuel cycle facilities and on the implementation of
treatment and recycling operations. On the other hand, americium is the main
contributor to the long term radiotoxicity and heat generation of glasses used today for
High Level Waste (HLW) storage. Until now, the question of its recycling still remains
open and the accompanying advantages and drawbacks must be carefully weighed.

1.2 Scenario studies

Scenario studies are carried out with the simulation software COSI and the objective
is to assess the impact of curium recycling on HLW radiotoxicity and decay heat.

To reach this objective, two scenario studies are considered as shown in figure 1.1:

e Scenario 1 (S1) considers a fleet of SFR recycling plutonium in the fissile part of the
core and minor actinides in the radial blankets. Two cases are considered: an
ambitious one with 40% of MA in the blankets and a more realistic case with 10%
of MA.

e Scenario 2 (S2) considers a fleet of SFR recycling plutonium in the fissile part of the
core and 40% of americium + neptunium in radial blankets (curium is sent to the
waste).

10 CURIUM MANAGEMENT STUDIES IN FRANCE, JAPAN AND USA, © OECD 2012



FRANCE

1.2.1 Scenario Assumptions

The scenario assumptions consider a fleet of Sodium-cooled Fast Reactors (SFR)
recycling plutonium and its associated nuclear facilities: reprocessing plant; fuel
fabrication plant; blanket fabrication plant; interim storage for spent fuel; and HLW and

ILW storage.

Figure 1.1. Scenarios S1 and S2: Scheme of the fleet after 2100

Pu, URT

Depleted

A 4

AM or Am

SFR Fabrication

\A 4

uranium

Blanket fabrication

A 4

A 4

Spent fuel interim
storage

SFR

Processing plant

> MOX
SFR
blankets

A

0,1% U
0,1% Pu FP

A 4

HLW 0,1% AM or

ILW

\ 4

MOX
SFR
Blankets

0.1% Am+Np, 100% Cm

The SFR core concept employed was developed by the CEA and French partners in
2008 and is known as SFR Version V2B [1]. The main neutronic data of this SFR are listed
in table 1.1. Basically, this SFR core has a breeding gain close to zero, even without any
radial and axial blankets. This SFR concept is studied in scenario 1 and has an iso-

generation objective.

Radial blankets are added to the core to transmute minor actinides on a depleted
uranium support. Consequently, the breeding gain of SFR becomes positive thanks to
plutonium production in radial blankets.

CURIUM MANAGEMENT STUDIES IN FRANCE, JAPAN AND USA, © OECD 2012
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FRANCE

Table 1.1. SFR: Assembly and core characteristics

Assembly and core characteristics SFR V2B
Thermal power 3600 MWth
Net electrical power 1450 MWe
Core management 5x 410 EFPD
Number of fissile assemblies 453
Heavy nuclide volume fraction (%vol)* 437
Na volume fraction (%vol) 276
Average core power density (W/cm?3)? 207
Reloading frequency 5
Average burnup (GWd/tons) ~100
Maximum burn-up (GWd/tons) 139
Average Pu content (%vol fuel) 15.8
Equivalent 239Pu weight content (%) 11.0
Initial Pu mass (tons)3 12.0
Total heavy nuclides mass (tons) 74.0
Average instantaneous breeding gain BOC/EOC +0.01
Void effect ($) EOC 49

The fuel cycle assumptions are listed in Table 1.2.

12

! Fuel porosity : 0,96

2Volume is calculated at T = 20°C
3 Pu vector : 28Pu=3.57 / #°Pu=47.38 / °Pu=29.66 / 2'Pu=8.23 / *?Pu=10.38 / *'Am=0.78
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FRANCE

Table 1.2. Fuel cycle assumptions

Fabrication

Fuel fabrication time 2 years

Reprocessing
Cooling time before SFR blankets: 5 years
reprocessing SFR fuel: 5 years,
Scenario 1:0.1% U, Pu, Am, Np, Cm
Scenario 2: 0.1% U, Pu, Am, 100% Np, Cm

Reprocessing losses

Priorities for reprocessing Chronologic order

1.2.2 Impact of Curium recycling on radiotoxicity and thermal power of the HLW

The complete calculation of High Level Waste isotopic composition allows to
determine the evolution of waste during long time storage, up to ten million years.
Radiotoxicity and thermal power of waste are calculated during long time storage. The
contributions of both heavy nuclei and fission products are taken into account.

In scenario 1, Pu and all the minor actinides are recycled. Thus, the fission products,
and U, Pu, MA losses are sent in the HLW.

In scenario 2, Pu, Am and Np are recycled. Thus, the fission products, and U, Pu, Am,
Np losses and all Cm are sent in the HLW. Compared to scenario 1, the recycling of Am in
the SFR also induces an increase in Cm production.

The results are compared with the current HLW produced in France, coming from
UOX reprocessing and containing the fission products, all the minor actinides, U and Pu
losses.

The radiotoxic inventory of the HLW is presented in Figure 1.2. In the case of Am+Np
recycling (Cm in the HLW), the radiotoxic inventory of the HLW:

e Islower than current HLW until 5000 years thanks to Am recycling (**Cm decay, T
= 18 years)

e Is higher than current HLW from 5000 to 50 000 years : impact of *°Pu produced by
2Cm decay

e After 50 000 years : lower than current HLW (decay of Am)

The radiotoxic inventory of the HLW of the scenario 1 is lower than the current HLW
after 100 years of cooling, i.e., after the decay of the fission products.

CURIUM MANAGEMENT STUDIES IN FRANCE, JAPAN AND USA, © OECD 2012 13



FRANCE

Figure 1.2. Radiotoxic inventory of the HLW
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The decay heat of the HLW is presented in Figure 1.3. In the case of Am+Np recycling
(Cm in the HLW), the decay heat of the HLW :

e is higher than current HLW until 100 years : FP and Cm dominate

e islower between 100 and 5000 years, thanks to Am recycling (almost all ***Cm has
disappeared because of ?*Cm decay, T = 18 years)

e is higher between 5000 and 50000 years (***Pu coming from ?**Cm)
e islower than current HLW (decay of Am) because of Am decay

The decay heat of the HLW of the scenario 1 is lower than the current HLW after 100
years of cooling, i.e., after the decay of the fission products.
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FRANCE

Figure 1.3. Decay Heat of the HLW
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Table 1.3. Comparison of HLW decay heat in %. Reference = Current glasses

Cooling time 50 70 100 200 300

Current glasses 1 1 1 1 1
40% AM in radial blankets 247 -28.6 -38.7 -81.4 -95.3
40% AM in radial blankets except CM 57.3 30.8 -3.1 -67.8 -80.4
AM transmutation homogeneous -23.7 -27.8 -38.4 -82.3 -96.3
10% AM in radial blankets 27.3 -31.1 -41.1 827 -96.1

In the case of MA transmutation (Am + Np + Cm), a reduction of HLW decay heat can
be obtained whatever the cooling time of the HLW. If Cm is not recycled, a reduction of
the decay heat compared to the current glasses is obtained after more than 100 years of

cooling.

Concerning the footprint of the HLW in deep geological storage, the different
evaluations show that it depends not only on the heat generation rate of these wastes but
also on the decay periods of the radionuclides involved. As shown in table 1.4, the
fraction of thermal power due to americium decay heat has a bigger impact on the
thermal footprint than the decay heat of the fission products. It is due to the intermediate

decay period of americium.

CURIUM MANAGEMENT STUDIES IN FRANCE, JAPAN AND USA, © OECD 2012
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Table 1.4. Impact of Am on HLW thermal footprint

F?n:}\%i)nt Prot (W) Pam/Prot
Co 0.161 155 4.50%
C1 0.172 465 18.50%
C2 0.172 489 17.60%

Furthermore, these evaluations show then that Am+Cm recycling compared to only
Am recycling has no significant reduction of the thermal footprint.

1.3 Americium separation process studies

Selective americium separation becomes more difficult as this process continues (see
Figure 1.4): i.e., after separation from all the fission products (for instance after the
SANEX process); or after co -decontamination of minor actinides plus lanthanides from
the other fission products (after the DIAMEX process); or directly from PUREX or COEX™
raffinates.

Figure 1.4. Three possible strategies for Am separation

Am+Cm+Ln+FP Am+Cm+Ln Am+Cm

Y Y Y

Am/Cm part. [Am/Cm part. {Am/Cm part.J

vV oy vy

Am Cm+Ln+FP  Am Cm+Ln Am Cm

The physico-chemical properties of Am, Cm and Ln(Ill) are very similar. They are
strongly hydrated and their ionic radius is similar. In addition, the acidity of the medium
(PUREX raffinates) is very high so there is a competition between nitric acid and cation
extraction. Moreover, the element inventory is very large.

It was in the framework of the French Act 1991 on high activity waste, that a three
step strategy was conceived for the first time (see Figure 1.5) [2]:
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Figure 1.5. Three step strategy for minor actinide separation

A

T_U Step 3

Spent fuel.
P PUREX ‘ [ sE

Step 1: The DIAMEX process with An(lll) and Ln(Ill) coextraction from PUREX
raffinate, thanks to a malonamide extractant, such as N,N’-dimethyl-N,N’-dioctyl-
hexylethoxy-malonamide (DMDOHEMA). An advantage of this step is that it reduces the
acidity of the “An(IlI)+Ln(Ill)” product solution, which is introduced in the second step
process. In this process, the trivalent actinides and lanthanides would be separated.

Step 2: The SANEX process for An(IIl) from Ln(IlI) separation:

Several routes have been investigated and finally CEA has chosen An(Ill) selective back
extraction. A hydrosoluble complexing agent (polyaminocarboxylic acid such as HEDTA)
efficient at low acidity is used in a buffered solution (pH adjusted between 2 and 4). The
solvent is a mixture of a malonamide (DMDOHEMA) co-extracting An(III)+Ln(Il) and an acidic
extractant (di-alkyl phosphoric acid such di-(2-ethyl-hexyl)-phosphoric acid acronym HDEHP)
which maintains the Ln(Ill) in the organic phase whereas the An(Ill) are selectively back-
extracted thanks to the HEDTA aqueous mixing agent in a buffered stripping solution.

This second step was validated in December 2005 in the C11/C12 hot cell in the
ATALANTE facility (see Figure 1.7), using the recovered An(IIl)+Ln(Ill) flux issuing from
the first DIAMEX step implemented just before, in November 2005, in another hot cell
called CBP for Process hot cell (see Figure 1.6) [3].

It should be mentioned that a single-step version of this concept was also settled and
validated thanks to a counter-current hot test performed on a genuine PUREX raffinate in
2000 in the C11/C12 hot cell of the ATALANTE facility [4].
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Figure 1.6. DIAMEX hot test performed in November 2005 on a genuine
PUREX raffinate in the ATALANTE facility
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Figure 1.7. SANEX hot test performed in December 2005 on a
DIAMEX stripping solution in the ATALANTE facility
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Step 3: Am(III) from Cm(III) separation
Two options were investigated in France.
The SESAME process

During a first phase (1992-2001), the SESAME process (Partitioning by selective
extraction of americium by electrochemical methods) was studied as a priority.

This choice is easily explained because SESAME provides additional flexibility. This
process permits the reprocessing of the flows arising either from SANEX or DIAMEX, with
the idea being to directly extract the americium from this effluent, with the curium not
passing through the fission products. SESAME is based on the selective oxidation of
americium (III), previously oxidised to oxidation state (IV) and then (VI) by electrolysis; a
lacunar heteropolyanion is used to stabilise the intermediate state by complexation. The
americium (VI) is then easily extracted by the TBP extractant from the PUREX process.

Between 1994 and 2001, research permitted the process to be refined, notably by:

e acquiring the basic data relating to the electrochemical oxidation phenomena of
americium, as well as its extraction by solvents;

o validating, by four high-level trials, the different unitary operations of the process;
o selecting the reagents.

All of these advances allowed, at the end of 2001, the implementation of a scientific
feasibility trial (SESAME 5) in shielded cells at ATALANTE. This test, performed under
real conditions, implemented the following steps:

e previous oxidation of the incoming flow to produce americium (VI) with
complexation of the valency (IV), by means of a continuously running electrolyzer
by recirculation until it is sent to extraction;
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e extraction of americium (VI) using the TBP solvent;

o reoxidation of the fraction of americium remaining in the aqueous solution after
three extraction steps. This is performed by an online electrolysis step
complemented by additional americium (VI) extraction.

The results of the SESAME 5 experiment are not consistent with the performance
predictions calculated with the aid of a model developed from the data acquired during
the previous trials. Thus, for americium, the following statistics were measured:

e a 78% recovery rate of the initial americium, with a purity of 99.5%;

e aloss of 13% of americium in the catholyte during electrolysis of the incoming
flow; this fraction would still be potentially recyclable;

o a leakage of 7 to 8% of the americium in the extraction phase due to limited
oxidation into Am (VI) in the incoming flow, which is no doubt attributable to the
presence of impurities.

For curium, the recovery rate is 88% in the solution arising from the second extraction
and the loss of 14% in the catholyte of the first oxidation. Thus, in 2001, the SESAME
process could not demonstrate its efficiency for reprocessing true high-level effluents.

Alternative process based on DIAMEX

The inadequate performance shown by the SESAME 5 experiment has led, since the
end of 2001, to the development of an alternative process by liquid-liquid extraction
based on the selectivity of certain extractants for americium (III) versus curium (IIl). Since
they are selective, the extractants, which will be used later on the industrial scale, must
be easy to implement and must not generate excessive quantities of secondary waste. In
principle, two types of systems meet such constraints:

o the diamides, like DMDOHEMA already used in the DIAMEX and SANEX processes;

e the calixarenes, such as Calix[4]arene-CMPO (CMPO: acronym for Carbomoyl
Methyl Phosphine Oxide). The latter, though the most selective, has not been
adopted for the trial to demonstrate the scientific feasibility. In fact, its
implementation proved to be more intricate than expected for the recovery of the
extracted americium in the aqueous phase.

The experiment procedure, performed in the ATALANTE facility at the end of 2002,
was as follows:

e the solvent is that used in the DIAMEX process, i.e. DMDOHEMA at a concentration
of 0.65 mol/l diluted in TPH, with the nitric acid concentration of the incoming
flow being fixed at 3 mol/l;

o the extraction-washing step comprises forty-eight stages and the stripping step
has eight stages. The trial had to be conducted with great rigor due to its
sensitivity to variations in temperature, flow rate and acidity. An online
spectrophotometric monitoring of the americium at five strategic points in the
experiment permitted the control of the trial and the attainment of the target
performance;

e 99.9% of the two actinides were recovered;

o the rate of americium left in the raffinate with curium was only 0.6 % and so the
recovery rate of purified americium reached 99.4% with only 0.7 % of the curium
from the feed.
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The above experiment procedure demonstrated the scientific feasibility of this
alternative method based on liquid-liquid extraction (see figure 1.8) [5]. Due to its
similarities to the DIAMEX process, this process was called DIAMEX 2.

Figure 1.8. Americium-curium partitioning hot test performed in December 2002 on surrogate
solution in ATALANTE facility
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1.3.1 Innovative single step process: ExXAm

More recently, in the frame of the 2006 act, the objective was to develop a single cycle
process to recover the sole Am(IIl) directly from PUREX or COEX™ raffinates. The
corresponding process was called ExAm (Extraction of Americium).

The EXAm process has been developed on the basis of the DIAMEX-SANEX process,
which was developed for the co-recovery and separation of Americium and Curium from
PUREX/COEX™ raffinate and improved by the progress accomplished during GANEX
process developments [6-7].

The principle of the EXAm process is based on the use of DMDOHEMA in the organic
phase; thanks to the little preferential extraction for Am versus Cm (separation factor is
equal to 1.6). So it is possible to extract americium together with some light lanthanides
with close values of distribution coefficients in high nitric acidity, while curium and other
lanthanides remain in the aqueous phase. The Tetra Ethyl Di Glycol Amide (acronym
TEDGA, see Figure 1.9) is added in the aqueous phase, as a hydrophilic ligand, in order to
increase the selectivitts Am/Cm and Am/heavy Lns, because of the preferential
complexation of curium and heavy lanthanides by this amide: the global efficiency of the
process is largely improved, with a corresponding decrease in the number of the necessary
separation stages. Then the americium is selectively stripped from light lanthanides like in
the DIAMEX-SANEX/HDEHP process [8].
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Figure 1.9. Structure of the N,N,N’,N’-tetra-ethyl-diglycolamide
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Between 2008 and 2009, numerous experimental data were acquired mainly for the
key step (Am+light Lns extraction and scrubbing): distribution coefficients versus [HNOs],
[TEDGA], [cations]ay, identification and stoechiometry of complexes both in the organic
and aqueous phases, determination of stability constants between Ln and TEDGA. The
data were used to implement a phenomenological model in the PAREX process code.

A spiked counter-current test involving mainly the innovative extraction-scrubbing
step was performed in December 2009 in the glove boxes of the ATALANTE facility on a
surrogate feed spiked with lanthanides, **!Am and ?**Cm, to assess the Am/Cm and
Am/heavy Lns separation efficiency in comparison with the modelling. Satisfactory results
were obtained: more than 97% of americium was recovered, with decontamination factor
higher than 1000. The concentrations of the radioisotopes measured during the test were in
good agreement with the values calculated using the PAREX code.

Finally, a complete hot test, using a genuine PUREX raffinate was carried out in April 2010,
in order to confirm these promising results (see Figure 1.10). This counter-current hot test
lasted about 60 hours. It consisted of 68 mixer-settler stages to insure americium only
extraction-scrubbing-stripping. Good agreement between experimental and simulated
performances was obtained: more than 99% of americium initially in the raffinate was
extracted and the decontamination factor of americium versus curium is more than 500.

Figure 1.10. EXAm process flowsheet tested in April 2010 to recover
the sole Am(III) from genuine PUREX raffinate
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Chapter 2: Japan

2.1 Evaluation of Cm production in various types of spent fuels

Cm is the main contributor of heat and neutron emission in minor actinides (MA)
bearing fuel, as shown in Table 2.1. The present chapter deals with the evaluation of Cm
production in various types of spent fuels (SF)[1], which is fundamental data necessary
for Cm management. The spent fuels considered in the present evaluation are listed in
table 2.2.They are LWR fuels of two different burn-ups (LWR-45G and LWR-60G), LWR
MOX fuel (LWR-MOX), FBR fuel with U and Pu [2] (FBR-MOX) and FBR fuel with minor
actinide (MA) recycle [3] (FBR-MA). The ORIGEN-2 code [4] with the cross section library
of ORILIBJ33 [5] was used for the burn-up calculation.

Table 2.1. Characteristics of main isotopes of transuranium elements

Isotope Half-life Neutron emission Decay heat
(v) (g's”) WgT)
ZTNp 2.14x106 0.90 0.00002
238py 87.7 3.6 x104 0.56
239py 2.41x104 96 0.002
0Py 6.54x103 1.3 x10° 0.007
21Py 14.4 1.23 0.004
42py 3.76x10° 2.0 x10° 0.0001
21Am 432.2 7.0 x108 0.11
243Am 7.38x103 5.4x102 0.0071
220m 0.446 2.9 x107 120
23Cm 28.5 1.3 x10° 1.7
24Cm 18.11 1.2 x107 28

* Spontaneous fission and (a, n) reaction

Table 2.3 shows actinide composition in each type of spent fuel (SF) cooled for 5 years
after discharge [1]. Composition of MA, Np, Am and Cm, in 1 ton of SF cooled for 5 years
is shown in Figure 2.1. Total amounts of MA and Cm are 1.27kg and 0.043kg (ratio of Cm
to MA is 3.4%) in LWR-45G, which increase with the burn-up and are 1.88kg and 0.147kg
(7.9%) in LWR-60G. These values are much larger in MOX fuel. The amount of Cm in
LWR-MOX is 0.63kg, which is about 14 times larger than that in LWR-45G. FBR-MOX
contains a smaller amount of Cm than LWR-MOX, but FBR-MA contains the largest
amount of Cm, 1.46kg, in 1 ton of spent fuel. Total amounts of MA in FBR-MOX and FBR-
MA are 7.2kg and 7.5kg respectively.
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Such an increase in MA amount in spent fuel brings about the increase of heat

emission from actinides.

Figure 2.2 shows heat emission from actinides and fission

products in 1 ton of spent fuel, and its decay. Heat emission from actinide in MOX fuel
(LWR-MOX, FBR-MOX and FBR-MA) is more than that from fission products when the fuel
is cooled more than 5 years.

Figure 2.3 shows heat emission from each isotope of actinides in 1 ton of spent fuel,
and its decay. Main contributors of heat emission are **Cm, *’Am and **Pu in all the
cooling time examined and **?Cm in shorter cooling time.

Table 2.2. Characteristics of main isotopes of transuranium elements

Symbol Reactor and fuel Burn-up Initial composition
45 GWdft o
LWR-45G LWR UO:2 fuel (38MW/tx1184.24) 4.5% U-235
60 GWadit o
LWR-60G LWR UO: fuel (38MWItx1578.9d) 4.5% U-235
45 GWd/t 0
LWR-MOX LWR MOX fuel (38MWItx1184.2d) 6.0% Pu+NU
FBR in OECD/NEA benchmark 78.8 GWd/t 0 0
FBR-MOX exercise (72MW/tx1095d) 17.0% Pu + DU(0.3%)
FBR with MA recycle 147.1 GWdt 19.8% Pu + DU(0.3%)
FBR-MA Core fuel (44.1MW/tx3335d) 0.92% MA
Blanket fuel 21 GWdft DU

NU:natural uranium, DU:depleted uranium, MA:*'Np,

237
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Table 2.3. Actinide composition in spent fuel cooled for 5 years
after discharge, as weight (g) per 1ton of initial heavy metal

LWR-45G LWR-60G LWR-MOX FBR-MOX FBR-MA*

232 2.17E-03 3.98E-03 9.36E-04 2.59E-03 1.52E-02
233 2.32E-03 2.66E-03 1.53E-03 5.92E-03 1.15E-02
24y 1.39E+01 2.48E+01 8.86E+01 2.24E+02 1.83E+02
235 1.13E+04 6.18E+03 3.00E+03 1.18E+03 8.67E+02
236y 5.70E+03 6.16E+03 7.21E+02 3.31E+02 4.39E+02
21y 4.27E-05 5.13E-05 1.88E-04 2.66E-04 1.63E-04
238 9.24E+05 9.11E+05 9.06E+05 7.45E+05 7.36E+05
=y 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
236Np 7.96E-04 1.16E-03 5.72E-04 2.45E-03 1.18E-02
23"Np 6.59E+02 8.93E+02 2.12E+02 2.83E+02 5.70E+02
28Np 1.54E-07 2.07E-07 3.63E-06 2.90E-05 3.24E-05
29Np 1.19E-04 2.71E-04 1.10E-03 1.14E-03 1.23E-03
236y 7.31E-04 1.26E-03 3.07E-04 8.57E-04 2.65E-03
238py 2.57E+02 4.80E+02 1.62E+03 3.60E+03 2.03E+03
239py 6.62E+03 6.65E+03 1.46E+04 9.62E+04 8.42E+04
240py 2.60E+03 3.20E+03 1.28E+04 4 57E+04 4.72E+04
241Py 1.38E+03 1.66E+03 6.06E+03 8.59E+03 5.28E+03
242py 6.57E+02 1.17E+03 5.12E+03 1.18E+04 5.54E+03
243py 1.40E-13 1.28E-12 3.43E-12 9.50E-13 1.20E-10
24Py 4.54E-02 1.44E-01 5.18E-01 1.78E-01 4.53E-01
241Am 4.30E+02 5.21E+02 2.37E+03 5.19E+03 3.89E+03
242mAm 8.19E-01 1.11E+00 1.94E+01 1.54E+02 1.73E+02
242Am 9.80E-06 1.32E-05 2.32E-04 1.85E-03 2.06E-03
23Am 1.38E+02 3.15E+02 1.28E+03 1.32E+03 1.44E+03
244mAm 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
24Am 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
242Cm 1.06E-02 1.72E-02 1.42E-01 4.79E-01 4.75E-01
43Cm 4.13E-01 9.20E-01 8.87E+00 1.69E+01 1.28E+01
24Cm 3.94E+01 1.31E+02 5.39E+02 2.61E+02 1.14E+03
245Cm 3.30E+00 1.37E+01 7.37E+01 2.01E+01 2.60E+02
246Cm 3.07E-01 2.00E+00 5.20E+00 8.73E-01 4.30E+01
27Cm 3.94E-03 3.60E-02 9.63E-02 2.67E-02 3.36E+00
248Cm 2.81E-04 3.89E-03 6.40E-03 8.39E-04 3.10E-01
Total An 9.54E+05 9.38E+05 9.54E+05 9.20E+05 8.90E+05

* Composition of FBR-MA was calculated as a mixture of core fuel and axial blanket with a ratio of 69 to 31.
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Figure 2.1. Weight of minor actinides, Np, Am and Cm, in 1 ton of spent fuel cooled for 5

years
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Figure 2.2. Heat emission from actinides and fission
products in 1 ton of spent fuel, and its decay
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Heat emission from each isopope of actinides (kW)

Figure 2.3. Heat emission from actinides in 1 ton of spent fuel, and its decay
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2.2 Study on Cm separation

A recent study on Cm separation from Am in Japan has been carried out in the
framework of the research and development of reprocessing based on ion exchange
method by using tertiary pyridine resin [6],[7]. The used resin was synthesised by
polymerisation of 4-vinylpyridine (80wt %) and m/p-divinylbenzene (20wt%) on the
surface of high porous silica beads [8],[9]. By using the silica-supported resin, the pressure
loss in the chromatography operation is considerably suppressed, and ions can easily
diffuse into the resin because of the high porous structure. The resin was confirmed to
have rather good stability against gamma-irradiation in nitric acid media and much
better in hydrochloric acid media [10]. Tertiary pyridine resin has two functions; one is a
function of weakly basic anion exchanger, and the other is a function of the soft donor
ligand [7], which can be used for the separation of trivalent actinides (Am and Cm) from
lanthanides [11] and the mutual separation between Am and Cm [6],[7].

The separation of Cm from Am is achieved by chromatography in nitric acid and
methanol medium. Alcohol promotes the interaction between the actinide cations and
pyridine, due to its dehydration effect [12], [13]. Many methods appeared in former
studies using alcohol for the mutual separation of actinides, which were developed for
the purpose of actinide analysis [14]. After experiments with Am and Cm tracer, the
separation method was tested with a small amount of real dissolved fuel of the test fast
reactor “JOYO” [6]. Feed solution to the mutual separation of Cm and Am was prepared
by dissolving the dried residue with the 2:3 (in volume) mixture of 8M nitric acid and
methanol. The residue was obtained by heating the Am-Cm fraction to dryness. The
fraction was separated by ion exchange from other actinides and fission products in the
former step. Eluent composition was the same as above. Figure 2.5 shows the results of
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the chromatographic separation test [6]. Cm was almost perfectly separated from Am.
The decontamination factor (DF) against Am in the Cm fraction was 8.7x10* and DF
against Cm in the Am fraction was 2.2x10°. This separation method would be very
attractive for the mutual separation of Am and Cm if the use of lower alcohol could be

accepted in industrial plant.

Figure 2.4. Chemical structure of tertiary pyridine resin
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Figure 2.5. Chromatogram of Am and Cm separation by
ion exchange using tertiary pyridine-type resin
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Chapter 3: USA

Neither americium nor curium is separated from fission product waste in used fuels
that are currently reprocessed. However, both americium and curium have radioisotopes
(**'Am, **Cm, and **Cm) that generate significant amounts of decay heat. Also, *'Am
decays to *'Np (half-life = 2.1 million years), which is the major long-lived contributor to
radiotoxicity in stored wastes. Therefore, advanced fuel cycles need to recycle both *'Np
and **!Am.

The need to separate curium from americium is lessened in longer-aged fuel because
the decay of *?Cm (half-life = 162 days) and ***Cm (half-life = 18.1 years) is significant.
Moreover, the need to separate curium from americium is also lessened in aged fuels
because the amount of *?Am (and thus the total americium) increases with time as a
result of the in-growth from decay of ?'Pu (half-life = 14.3 years). The effects are
illustrated by the data shown in Table 3.1.

Table 3.1. Fraction of curium in americium-curium expressed as percent at 45
GWd/MT burn-up mass and decay heat-variation with decay time

Mass (g/ton) Decay heat (Wi/ton)
1y 5y 30y 1y 5y 30y
#am 135 407 1.272 15.3 46.4 145
% 105 105 105 0.67 067 0.67
Total Am 240 512 1.377 16.0 471 146
o) 3.84 0.11 0.0026 467 1.3 0.32
o) 35.3 30.3 11.6 100 85.6 329
6m 22 22 22 0.01 0.01 0.01
Total Cm 419 33.0 14.2 568 87.6 336
%Cm in Am-Cm 14.9 6.1 1.02 97.3 65.0 18.7

Previous studies [1] have shown that both curium and americium have radioactive
emissions (neutrons and beta-gamma photons, respectively) that require shielded
facilities for separation processes and recycle target fabrication. This finding is illustrated
by the data shown in Table 3.2.
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Table 3.2. Comparison of contributions® of the transuranic elements

Spontaneous
Decay fission
heat? neutrons® Photons?
Pu 45% 0.6% 18%
Np 0% 0.0% 0%
Am 1% 0.02% 70%
Cm 44% 99.4% 12%
%Cm in
80 ~100 14.6
Am-Cm
aBased on calculations by J. Stillman, “Proliferation Resistance
Metrics for Separated Streams of Reactor Grade Transuranics,” Trans.
Am. Nucl. Soc., 92, 282-283 (June 2005).
b Used fuel that has been irradiated for 55 GWd/MT and decayed for
5 years.

Even though the type of shielding required is different for americium (gamma
shielding) and curium (neutron shielding), both types of shielding can be provided
together in hot cell construction. Even if curium is separated from americium,
subsequent treatment of each separated element will require shielded facilities.
Therefore, separation of curium from americium does not lessen the need for shielded
facilities for recycle target fabrication (americium) or decay storage (curium).

The benefits of reprocessing used fuels after a significantly long storage period (30 to
70 years) have been determined and described in recent systems studies [2]. One of the
major benefits is the alteration of the transuranium (TRU) actinide transmutation
pathway to produce lighter plutonium nuclides (**Pu, *°Pu) rather than heavier element

nuclides (***Pu, **Am, ***Cm, *2Cf, etc.), as illustrated by the pertinent portion of the chart
of the nuclides, shown in Figure 3.1.
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Figure 3.1. Transmutation benefits of older fuel—alters transmutation pathway to
produce lighter plutonium nuclides rather than heavy curium nuclides
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In this chart, “aged fuel” is defined as two or more half-lives of **'Pu (>30 years).
Recycling lesser-aged fuels (“young fuel”) produces larger amounts of the heavy element
TRU nuclides (**?Pu, ***Am, ***Cm, *°Cf, etc). In the United States, an inventory of aged fuel
is accumulating and the reprocessing of such fuel (recycling the “oldest-fuel-first”) may
be taken advantage of.

Recent systems analysis studies have compared the effects of recycling both
unseparated americium-curium or only separated americium during five successive
partitioning-transmutation (P-T) cycles using both thermal spectrum pressurised-water
reactors and fast spectrum burner reactors. The data for the curium inventory at the
beginning of each transmutation cycle are shown in Figure 3.2 for a P-T series with 5-year
decay periods between cycles (10-year P-T cycles) and for a P-T series with 30 years decay
periods between cycles (35 years P-T cycles). All three sets of data show that the
accumulated curium inventory is greater when the curium is removed and stored at the
end of each P-T cycle than when the americium and curium are recycled together. When
curium is stored for decay, the decay daughter is *°Pu (half-life = 6570 years), which is
another long-lived TRU actinide. When curium is irradiated, however, most of the
destruction is by fissioning of **Cm, *’Cm, and *'Cf. The implications are that it is not
beneficial to separate curium from americium. In addition, when such separation does
not occur, there is no need for managed storage of the curium.
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Figure 3.2. Comparison of curium inventory during multiple partitioning-transmutation
cycles when curium is recycled and when curium is removed and stored at the end of each
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Most of the reprocessing separative steps being developed for advanced fuel cycles
(Figure 3.3) require separate processes for recovery of the combined trivalent actinides
(americium and curium) and lanthanide fission products, followed by a complex process

for partitioning americium-curium from the lanthanides.
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Figure 3.3. Separations processes for americium
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If curium is to be removed from the americium, another complex process will be
required. However, if a simplified industrial-scale separation process for americium and
curium can be developed by means of oxidising americium to the pentavalent or
hexavalent state, then it may be more reasonable to consider removal and managed

storage of the curium.

3.1 Summary

In summary, most of the factors affecting a decision to recycle curium in the United
States appear to favour recycling without separation from americium, while reprocessing
the used fuels after a decay storage period of 30 to 70 years. Fuels in this age range are
already accumulating in the United States. Further research and development for the

Am*? from Cm*3
and Ln*3

Am*® or Am*®
from Cm*? & Ln*3

advanced fuel cycle may provide an incentive to separate and store the curium.

[1] J. Stillman, “Proliferation Resistance Metrics for Separated Streams of Reactor Grade
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