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1. One source datum 1

Guidelines for the Assignment of Uncertainties

One of the objectives of the NEA Thermochemical Data Base (TDB) project is
to provide an idea of the uncertainties associated with the data selected in this re-
view. As a rule, the uncertainties define the range within which the corresponding
data can be reproduced with a probability of 95% at any place and by any appro-
priate method. In many cases, statistical treatment is limited or impossible due
to the availability of only one or few data points. A particular problem has to be
solved when significant discrepancies occur between different source data. These
guidelines outline the statistical procedures to be used for fundamentally differ-
ent problems and explains the philosophy to be used when statistics are inapplic-
able. These rules should be followed consistently throughout the series of reviews
within the TDB Project. Four fundamentally different cases are considered:

1. One source datum available

2. Two or more independent source data available

3. Several data available at different ionic strengths

4. Data at non-standard conditions: Procedures for data correction and recal-
culation.

1 One source datum

The assignment of an uncertainty to a selected value that is based on only one
experimental source is a highly subjective procedure. In some cases, the number
of data points the selected value is based on allows the use of the “root mean
square” [82TAY] deviation of the data pointsXi to describe the standard deviation
sX associated with the averageX:

sX =
√√√√ 1

N − 1

N∑
i=1

(Xi − X)2 (1)

The standard deviationsX is thus calculated from the dispersion of the equally
weighted data pointsXi around the averageX, and the probability is 95% that
an Xi is within X ± 1.96sX), see Taylor [82TAY, pp.244-245]. The standard
deviationsX is a measure of the precision of the experiment and does not include
any systematic errors.

Many authors report standard deviationssX calculated with Eq. (1) (but often
not multiplied by 1.96), but these do not represent the quality of the reported
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2. Two or more independent source data 2

values in absolute terms. It is thus important not to confuse the standard deviation
s with the uncertaintyσ . The latter reflects the reliability and reproducibility of
an experimental value and also includes all kinds of systematic errorssj that may
be involved. The uncertaintyσ can be calculated with Eq. (2), assuming that the
systematic errors are independent.

σX =
√

s2
X +∑

j (s
2
j ) (2)

The estimation of the systematic errorssj (which, of course, have to relate toX
and be expressed in the same unit) can only be made by a person who is familiar
with the experimental method. If the reviewer feels he does not have enough
experience with the experimental method to estimate the systematic errors, an
experienced scientist should be consulted. The uncertaintyσ should correspond
to the 95% confidence level preferred in this review. It should be noted that for all
the corrections and recalculations that need to be made (e.g., temperature or ionic
strength corrections) the rules of the propagation of errors must be followed, as
outlined in Section4.

More often, the determination ofsX is not possible because either only one
or two data points are available, or the authors did not report the individual val-
ues. The uncertaintyσ in the resulting value can still be estimated using Eq. (2)
assuming thats2

X is much smaller than
∑

j (s
2
j ), which is usually the case anyway.

2 Two or more independent source data

Frequently, two or more experimental data sources are available, reporting exper-
imental determinations of the desired thermodynamic data. In general, the quality
of these determinations varies widely, and the data have to be weighted accord-
ingly for the calculation of the mean. Instead of assigning weight factors, the
individual source dataXi are provided with an uncertaintyσi that also includes
all systematic errors and represents the 95% confidence level, as described in Sec-
tion 1. The weighted meanX and its uncertaintyσX are then calculated according
to Eqs. (3) and (4).

X ≡
∑N

i=1

(
Xi

σ 2
i

)
∑N

i=1

(
1
σ 2

i

) (3)

σX =
√√√√√ 1∑N

i=1

(
1
σ 2

i

) (4)
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2. Two or more independent source data 3

Eqs. (3) and (4) may only be used if all theXi belong to the same parent distri-
bution. If there are serious discrepancies among theXi , one should proceed as
described below under “Discrepancies”. It can be seen from Eq. (4) that σX is
directly dependent on the absolute magnitude of theσi values, and not on the dis-
persion of the data points around the mean. This is reasonable because there are
no discrepancies among theXi , and because theσi values already represent the
95% confidence level. The selected uncertaintyσX will therefore also represent
the 95% confidence level.

In cases where all the uncertainties are equalσi = σ , Eqs. (3) and (4) reduce
to Eqs. (5) and (6).

X = 1

N

N∑
i=1

Xi (5)

σX = σ√
N

(6)

Example 1:

Five data sources report values for the thermodynamic quantityX. The reviewer
has assigned uncertainties that represent the 95% confidence level as described in
Section1.

i Xi σi

1 25.3 0.5
2 26.1 0.4
3 26.0 0.5
4 24.85 0.25
5 25.0 0.6

According to Eqs. (3) and (4), the following result is obtained:

X = 25.3 ± 0.2

The calculated uncertaintyσX = 0.2 appears relatively small but is statistically
correct, for the values are assumed to follow a Gaussian distribution. As a con-
sequence of Eq. (4), σX will always come out smaller than the smallestσi . As-
sumingσ4 = 0.10 instead of 0.25 would yieldX = (25.0 ± 0.1), andσ4 = 0.60
would result inX = (25.6 ± 0.2). In fact, the values(Xi ± σi ) in this example
are at the limit of consistency, that is, the range(X4 ± σ4) does not overlap with
the ranges(X2 ± σ2) and(X3 ± σ3). There might be a better way to solve this
problem. Three possible alternatives seem more reasonable:
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2. Two or more independent source data 4

i. The uncertaintiesσi are reassigned because they appear too optimistic after
further consideration. Some assessments may have to be reconsidered and
the uncertainties reassigned. For example, multiplying all theσi by 2 would
yield X = (25.3 ± 0.3).

ii. If reconsideration of the previous assessments gives no evidence for re-
assigning theXi and σi (95% confidence level) values listed above, the
statistical conclusion will be that all theXi do not belong to the same
parent distribution and cannot therefore be treated in the same group (cf.
item iii below for a non-statistical explanation). The values fori = 1,
4 and 5 might be considered as belonging to Group A and the values for
i = 2 and 3 to Group B. The weighted average of the values in Group A is
XA(i = 1, 4, 5) = (24.95± 0.21) and of those in Group BXB(i = 2, 3) =
(26.06± 0.31), the second digit after the decimal point being carried over
to avoid loss of information. The selected value is now determined as de-
scribed below under “Discrepancies” (Case I).XA and XB are averaged
(straight average, there is no reason for givingXA a larger weight thanXB),
andσX is chosen in such a way that it covers the complete ranges of expect-
ancy ofXA andXB. The selected value is thenX = (25.5 ± 0.9).

iii. Another explanation could be that unidentified systematic errors are associ-
ated with some values. If this seems likely to be the case, there is no reason
for splitting the values up into two groups. The correct way of proceeding
would be to calculate the unweighted average of all the five points and as-
sign an uncertainty that covers the whole range of expectancy of the five
values. The resulting value is thenX = (25.45± 1.05), which is rounded
according to the rules in Section4 to X = (25.4 ± 1.1).

Discrepancies

Two data are called discrepant if they differ significantly,i.e., their uncertainty
ranges do not overlap. In this context, two cases of discrepancies are considered.
Case I: Two significantly different source data are available. Case II: Several,
mostly consistent source data are available, one of them being significantly differ-
ent,i.e., an “outlier”.

Case I: This is a particularly difficult case because the number of data points
is obviously insufficient to allow the preference of one of the two values. If there
is absolutely no way of discarding one of the two values and selecting the other,
the only solution is to average the two source data in order to obtain the selected
value, because the underlying reason for the discrepancy must be unrecognized
systematic errors. There is no point in calculating a weighted average, even if the
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2. Two or more independent source data 5

two source data have been given different uncertainties, because there is obviously
too little information to give even only limited preference to one of the values.
The uncertaintyσX assigned to the selected meanX has to cover the range of
expectation of both source dataX1, X2, as shown in Eq. (7).

σX = ∣∣Xi − X
∣∣+ σmax (7)

wherei = 1, 2, andσmax is the larger of the two uncertaintiesσi , see Example1.ii
and Example2.

Example 2:

The following credible source data are given:

X1 = 4.5 ± 0.3
X2 = 5.9 ± 0.5

The uncertainties have been assigned by the reviewer. Both experimental methods
are satisfactory, and there is no justification to discard one of the data. The selected
value is then:

X = 5.2 ± 1.2

Illustration for Example2:

u

X

u

X1
u

X2

-

4 4.5 5 5.5 6 6.5
X

Case II: This problem can often be solved by either discarding the outlying data
point, or by providing it with a large uncertainty to lower its weight. If, however,
the outlying value is considered to be of high quality and there is no reason to
discard all the other data, this case is treated in a way similar to Case I. Example3
illustrates the procedure.

Example 3:

The following data points are available. The reviewer has assigned the uncertain-
ties and sees no justification for any change.
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3. Several data at different ionic strengths 6

i Xi σi

1 4.45 0.35
2 5.9 0.5
3 5.7 0.4
4 6.0 0.6
5 5.2 0.4

There are two sets of data that, statistically, belong to different parent distributions
A and B. According to Eqs. (3) and (4), the following average values are found
for the two groups:XA(i = 1) = (4.45 ± 0.35) andXB(i = 2, 3, 4, 5) =
(5.62 ± 0.23). The selected value will be the straight average ofXA and XB,
analogous to Example1:

X = 5.0 ± 0.9.

3 Several data at different ionic strengths

The extrapolation procedure used in this review is the SIT method outlined in the
NEA Guidelines for the Extrapolation to Zero Ionic Strength (TDB-2) [98GRE/WAN].
The objective of the TDB project is to provide selected data sets at infinite dilution
for aqueous species. Equilibrium constants determined at different ionic strengths
can, according to the SIT method, be extrapolated toI = 0 with a linear regres-
sion model, yielding as the intercept the desired equilibrium constant atI = 0,
and as the slope the stoichiometric sum of the ion interaction coefficients,1ε.
The ion interaction coefficient of the target species can usually be extracted from
1ε, and it will be published in the review report as a selected value, because the
user of these data needs this information to extrapolate back fromI = 0.

The available source data may sometimes be sparse or may not cover a suffi-
cient range of ionic strengths to allow a proper linear regression. In this case, the
correction toI = 0 should be carried out according to the procedure described in
Section4.

If sufficient data are available at different ionic strengths and in the same inert
salt medium, a weighted linear regression will be the appropriate way to obtain
both the constant atI = 0, X

◦
, and1ε. The first step is the conversion of the ionic

strength from the frequently used molar (mol· dm−3, M) to the molal (mol· kg−1,
m) scale, as described in TDB-5 (Standards and conventions for TDB publica-
tions). The second step is the assignment of an uncertaintyσi , representing the
95% confidence level, to each data pointXi at the molalitymk,i , according to
the rules described in Section1. A large number of commercial and public do-
main computer programs and routines exist for weighted linear regressions. The
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3. Several data at different ionic strengths 7

subroutine published by Bevington [69BEV, pp.104-105], has been used for the
calculations in the examples of these guidelines. Eqs. (8) through (12) present the
equations that are used for the calculation of the interceptX

◦
and the slope1ε:

X
◦ = 1

1

(
N∑

i=1

m2
k,i

σ 2
i

N∑
i=1

Xi

σ 2
i

−
N∑

i=1

mk,i

σ 2
i

N∑
i=1

mk,i Xi

σ 2
i

)
(8)

−1ε = 1

1

(
N∑

i=1

1

σ 2
i

N∑
i=1

mk,i Xi

σ 2
i

−
N∑

i=1

mk,i

σ 2
i

N∑
i=1

Xi

σ 2
i

)
(9)

σX
◦ =

√√√√ 1

1

N∑
i=1

m2
k,i

σ 2
i

(10)

σ1ε =
√√√√ 1

1

N∑
i=1

1

σ 2
i

(11)

where 1 =
N∑

i=1

1

σ 2
i

N∑
i=1

m2
k,i

σ 2
i

−
(

N∑
i=1

mk,i

σ 2
i

)2

(12)

In this way, the uncertaintiesσi are not only used for the weighting of the data
in Eqs. (8) and (9), but also for the calculation of the uncertaintiesσX

◦ andσ1ε

in Eqs. (10) and (11). If theσi represent the 95% confidence level,σX
◦ andσ1ε

will also do so. In other words, the uncertainties of the intercept and the slope do
not depend on the dispersion of the data points around the straight line but rather
directly on their absolute uncertaintiesσi .

Example 4:

Ten independent determinations of log∗
10β for the reaction

UO2+
2 + HF(aq) ⇀↽ UO2F+ + H+

are available in HClO4/NaClO4 media at different ionic strengths. Uncertain-
ties that represent the 95% confidence level have been assigned by the reviewer.
A weighted linear regression,(log ∗

10β + 2D) vs. mk, according to the formula
log ∗

10β + 2D = log ∗
10β

◦ − 1ε mk, will yield the correct values for the intercept
log ∗

10β
◦ and the slope1ε. In this case,mk corresponds to the molality of ClO−4 .

Version of 1st June 1999



3. Several data at different ionic strengths 8

i m ClO−
4 ,i log ∗

10βi + 2D σi

1 0.05 1.88 0.10
2 0.25 1.86 0.10
3 0.51 1.73 0.10
4 1.05 1.84 0.10
5 2.21 1.88 0.10
6 0.52 1.89 0.11
7 1.09 1.93 0.11
8 2.32 1.78 0.11
9 2.21 2.03 0.10
10 4.95 2.00 0.32

Note: D is the Debye-Hückel term, see NEA Guidelines on Extrapolation to Zero
Ionic Strength (TDB-2) [98GRE/WAN].

The results of the linear regression are:

intercept = 1.837± 0.054 = log ∗
10β

◦
slope = 0.029± 0.036 = −1ε

Calculation of the ion interaction coefficientε(UO2F+,ClO−
4 ) = 1ε + ε

(UO2+
2 ,ClO−

4 )

−ε(H+,ClO−
4 ): From ε

(UO2+
2 ,ClO−

4 )
= (0.46 ± 0.03), ε(H+,ClO−

4 ) = (0.14 ±
0.02) (see NEA Guidelines on Extrapolation to Zero Ionic Strength, TDB-2)
[98GRE/WAN] and the slope of the linear regression,1ε =(−0.03 ± 0.04), it
follows thatε(UO2F+,ClO−

4 ) = (0.29± 0.05). Note that the uncertainty (±0.05) is
obtained based on the rules of error propagation as described in Section4:

σ =
√

(0.04)2 + (0.03)2 + (0.02)2

The resulting selected values are thus

log ∗
10β

◦ = 1.84± 0.05

ε(UO2F+,ClO−
4 ) = 0.29± 0.05.

Discrepancies or insufficient number of data points

Discrepancies are principally treated as described in Section2. Again, two cases
can be defined. Case I: Only two data are available. Case II: An “outlier” cannot
be discarded. If only one data point is available, the procedure for correction to
zero ionic strength outlined in Section4 should be followed.

Case I: If only two source data are available, there will be no straightforward
way to decide whether or not these two data points belong to the same parent
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3. Several data at different ionic strengths 9

distribution unless either the slope of the straight line is known or the two data
refer to the same ionic strength. Drawing a straight line right through the two
data points is an inappropriate procedure because all the errors associated with
the two source data would accumulate and may lead to highly erroneous values of
log10 K ◦ and1ε. In this case, an ion interaction coefficient for the key species in
the reaction in question may be selected by anology (charge is the most important
parameter), and a straight line with the slope1ε as calculated may then be drawn
through each data point. If there is no reason to discard one of the two data points
based on the quality of the underlying experiment, the selected value will be the
unweighted average of the two standard state data obtained by this procedure, and
its uncertainty must cover the entire range of expectancy of the two values, ana-
logous to Case I in Section2. It should be mentioned that the ranges of expectancy
of the corrected values atI = 0 are given by their uncertainties which are based
on the uncertainties of the source data atI 6= 0 and the uncertainty in the slope of
the straight line. The latter uncertainty is not an estimate but is calculated from the
uncertainties in the ion interaction coefficients involved, according to the rules of
error propagation outlined in Section4. The ion interaction coefficients estimated
by analogy will be listed in the table of selected ion interaction coefficients, but
they will be flagged as estimates.

Case II. Outliers and inconsistent data sets:This case includes situations
where it is difficult to decide whether or not a large number of points belong
to the same parent distribution. There is no general rule on how to solve this
problem, and decisions are left to the judgement of the reviewer. For example,
if eight data points follow a straight line reasonably well and two lie way out,
it may be justified to discard the “outliers”. If, however, the eight points are
scattered considerably and two points are just a bit further out, one can probably
not consider them as “outliers”. It depends on the particular case and on the
judgement of the reviewer whether it is reasonable to increase the uncertainties of
the data to reach consistency, or whether the slope1ε of the straight line should
be estimated by analogy.

Example 5:

Six reliable determinations of the equilibrium constant log10β of the reaction

UO2+
2 + SCN− ⇀↽ UO2SCN+ (13)

are available in different electrolyte media:
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3. Several data at different ionic strengths 10

Ic = 0.1 M (KNO3): log10β(13) = 1.19± 0.03
Ic = 0.33 M (KNO3): log10β(13) = 0.90± 0.10
Ic = 1.0 M (NaClO4): log10β(13) = 0.75± 0.03
Ic = 1.0 M (NaClO4): log10β(13) = 0.76± 0.03
Ic = 1.0 M (NaClO4): log10β(13) = 0.93± 0.03
Ic = 2.5 M (NaNO3): log10β(13) = 0.72± 0.03

The uncertainties are assumed to represent the 95% confidence level. From the
values atIc = 1 M, it can be seen that there is a lack of consistency in the data, and
that a linear regression like in Example4 would not be appropriate. Instead, the
use of1ε values from reactions of the same charge type is encouraged. Analogies
with 1ε are more reliable than analogies with singleε values due to cancelling
effects. For the same reason, the dependency of1ε on the type of electrolyte is
often smaller than for singleε values.

A reaction of the same charge type as Reaction13, and for which1ε is well
known, is

UO2+
2 + Cl− ⇀↽ UO2Cl+ (14)

The value of1ε(14) = −(0.25 ± 0.02) was obtained from a linear regression
using 16 experimental data betweenIc = 0.1 M and Ic = 3 M Na(Cl,ClO4)
[92GRE/FUG]. It is thus assumed that

1ε(13) = 1ε(14) = −0.25± 0.02

The correction of log10β(13) to Ic = 0 is done using the SIT equation,cf. TDB-2
[98GRE/WAN], which uses molal units:

log10β + 4D = log10β◦ − 1ε Im (15)

D is the Debye-Hückel term in molal units andIm the ionic strenght converted
to molal units by using the conversion factors listed in [76BAE/MES, p. 439].
The following list gives the details of this calculation. The resulting uncertainties
in log10β are obtained based on the rules of error propagation as described in
Section4.
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4. Procedures for data handling 11

Im electrolyte log10β 4D 1ε Im log10 β◦

0.101 KNO3 1.19± 0.03 0.438 -0.025 1.68±0.03(a)

0.335 KNO3 0.90± 0.10 0.617 -0.084 1.65±0.10(a)

1.050 NaClO4 0.75± 0.03 0.822 −0.263 1.31±0.04
1.050 NaClO4 0.76± 0.03 0.822 −0.263 1.32±0.04
1.050 NaClO4 0.93± 0.03 0.822 −0.263 1.49±0.04
2.714 NaNO3 0.72± 0.03 0.968 −0.679 1.82±0.13(a)

(a) These values were corrected for the formation of the nitrate com-
plex UO2NO+

3 by using log10 K (UO2NO+
3 ) = (0.30 ± 0.15)

[92GRE/FUG].

As was expected, the resulting values log10β◦ are inconsistent and have therefore
to be treated as described in Case I of Section2. That is, the selected value will be
the unweighted average of log10β◦, and its uncertainty will cover the entire range
of expectancy of the six values. A weighted average would only be justified if the
six values of log10β◦ were consistent. The result is

log10β◦ = 1.56± 0.39

4 Procedures for data handling

This section presents rules and guidelines for the following topics:

– Correction to zero ionic strength

– Propagation of errors

– Rounding

– Significant digits

Correction to zero ionic strength

The correction of experimental data to zero ionic strength is necessary in all cases
where a linear regression is impossible or appears inappropriate. The method used
throughout the review is the specific ion interaction method (SIT). This method is
described in detail in the NEA Guidelines on Extrapolation to Zero Ionic Strength
(TDB-2) [98GRE/WAN]. Two variables are needed for this correction, and both
have to be provided with an uncertainty at the 95% confidence level: the experi-
mental source value, log10 K or log10β, and the stoichiometric sum of the ion in-
teraction coefficients,1ε. The ion interaction coefficients (see tables in the NEA
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4. Procedures for data handling 12

Guidelines on Extrapolation to Zero Ionic Strength, TDB-2 [98GRE/WAN]) re-
quired to calculate1ε may not all be known. Missing values therefore need to be
estimated. It is recalled that the electric charge has the most significant influence
on the magnitude of the ion interaction coefficients, and that it is in general more
reliable to estimate1ε from known reactions of the same charge type, rather than
to estimate singleε values. The uncertainty of the corrected value atI = 0 is
calculated by taking into account the propagation of errors, as described below.
It is recalled that the ionic strength is frequently given in moles per dm3 of solu-
tion (molar, M) and has to be converted to moles per kg H2O (molal, m), as the
SIT equation requires. A table of conversion factors for the most common inert
salts given by Baes and Mesmer [76BAE/MES, p. 439] is represented in TDB-5
(Standards and conventions for TDB publications) [98WAN/ÖST].

Example 6:

For the equilibrium constant of the reaction

M3+ + 2H2O(l) ⇀↽ M(OH)+2 + 2H+ (16)

only one credible determination in 3 M NaClO4 solution is known, log∗
10β(16) =

−6.31, to which an uncertainty of±0.12 has been assigned. The ion interaction
coefficients are as follows:

ε(M3+,ClO−
4 ) = 0.56± 0.07

ε(M(OH)+2 ,ClO−
4 ) = 0.26± 0.11

ε(H+,ClO−
4 ) = 0.14± 0.01

1ε andσ1ε can be obtained readily:

1ε = ε(M(OH)+2 ,ClO−
4 ) + 2ε(H+,ClO−

4 ) − ε(M3+,ClO−
4 ) = −0.02

σ1ε =
√

(0.11)2+(2 × 0.01)2+(0.07)2 = 0.13

The two variables are thus:

log ∗
10β(16) = −6.31± 0.12

σ1ε = −0.02± 0.13

According to the SIT method, the following equation is used to correct for ionic
strength for the reaction considered here:

log ∗
10β + 6D = log ∗

10β
◦−1ε mClO−

4
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4. Procedures for data handling 13

D is the Debye-Hückel term:D = 0.509
√

Im/(1 + 1.5
√

Im). The ionic strength
Im and the molalitymClO−

4
(Im ≈ mClO−

4
) have to be expressed in molal units, 3 M

NaClO4 corresponding to 3.5 m NaClO4 [76BAE/MES], giving D = 0.25. This
results in

log ∗
10β◦(16) = −4.88.

The uncertainty in log∗
10β◦(16) is calculated from the uncertainties in log∗10β(16)

and1ε:

σlog ∗
10β◦ =

√
σ 2

log ∗
10β

+
(
mClO−

4
σ 2

1ε

)2 =
√

(0.12)2 + (3.5 × 0.12)2 = 0.44

The selected value is:

log ∗
10β

◦(16) = −4.9 ± 0.4.

Propagation of errors

Whenever data are converted or recalculated, or other algebraic manipulations are
performed that involve uncertainties, the propagation of these uncertainties has
to be taken into account in a correct way. A detailed outline of the propagation
of errors is given by Bevington [69BEV]. A simplified form of the general for-
mula for error propagation is given by Eq. (17), supposing thatX is a function of
Y1, Y2, ...., YN .

σ 2
X =

N∑
i=1

(
∂ X

∂Yi
σYi

)2

(17)

Eq. (17) can be used only if the variablesY1, Y2, ..., YN are independent or if
their uncertainties are small, that is the covariances can be disregarded. One of
these two assumptions can almost always be made in chemical thermodynamics,
and Eq. (17) can thus almost universally be used in this review. Eqs. (18) through
(22) present explicit formulae for a number of frequently encountered algebraic
expressions, wherec, c1, c2 are constants.

X = c1Y1 ± c2Y2 : σ 2
X = (c1σY1)

2 + (c2σY2)
2 (18)

X = ±cY1Y2 and X = ±cY1

Y2
:

(σX

X

)2 =
(

σY1

Y1

)2

+
(

σY2

Y2

)2

(19)

X = c1Y±c2 :
σX

X
= c2

σY

Y
(20)

X = c1 e±c2Y :
σX

X
= c2σY (21)

X = c1 ln(±c2Y) : σX = c1
σY

Y
(22)
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4. Procedures for data handling 14

Here are some examples to illustrate how to use these formulae. The values have
not been rounded.

Example 7:

Eq. (18) : 1rGm = 2[−(277.4 ± 4.9)] kJ · mol−1

− [−(467.3 ± 6.2)] kJ · mol−1

1rGm = −(87.5 ± 11.6) kJ · mol−1

Eq. (19) : K = (0.038±0.002)
(0.0047±0.0005) = (8.09± 0.92)

Eq. (20) : K = 4(3.75± 0.12)3 = (210.9 ± 20.3)

Eq. (21) : K ◦ = e
−1rG◦

m
RT ; 1rG◦

m = −(2.7 ± 0.3) kJ · mol−1

R = 8.3145 J· K−1 · mol−1

T = 298.15 K
K ◦ = 2.97± 0.36

Note that powers of 10 have to be reduced to powers ofe, i.e., the variable has to
be multiplied by ln(10), e.g.:

log10 K = (2.45± 0.10); K = 10log10 K = e(ln(10) log10 K ) = (282± 65)

Eq. (22) : 1rG◦
m = −RT ln K ◦ ; K ◦ = (8.2 ± 1.2) × 106

R = 8.3145 J· K−1 · mol−1

T = 298.15 K

1rG◦
m = −(39.46± 0.36) kJ · mol−1

ln K ◦ = 15.92± 0.15
log10 K ◦ = ln K ◦/ ln(10) = 6.91± 0.06

Again, it can be seen that the uncertainty in log10 K ◦ cannot be the same as in
ln K ◦. The constant conversion factor of ln(10) = 2.303 is also to be applied to
the uncertainty.

Example 8:

Solubility curves as a function of some variable, e. g. pH, are often used in the
discussions in the TDB books. To plot uncertainty limits of such curves, it is often
possible to use simple error propagation formulae. As an example, consider the
solubility of some metal cation Men+ as a function of pH, where we have the
following set of equilibria:
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MeOn
2
(s) + nH+ ⇀↽ Men+ + n

2H2O Ks,0

Men+ + H2O ⇀↽ Me(OH)n−1 + H+ ∗β
Men+ + 3H2O ⇀↽ Me(OH)n−3

3 + 3H+ ∗β3

Then we can write the total solubility of Men+, which equals the total concentra-
tion S in solution of all Me-containing species as a function of [H+] as follows,
ignoring the activity of water:

S = Ks,0[H+]n + Ks,0
∗β1[H+]n−1 + Ks,0

∗β3[H+]n−3 (23)

We can then make use of Eqs. (18) and (19), considering the stability constants as
independent stochastic variables, which gives the total uncertainty in the solubil-
ity:

σ 2
S = (σKs,0[H

+]n)2 + ([H+]n−1)2
(
(σ Ks,0

∗β)2 + (σ∗βKs,0)
2
)

+ (24)

([H+]n−3)2
(
(σ Ks,0

∗β3)
2 + (σ∗β3Ks,0)

2
)

In this way, we obtain the total uncertainty of the solubility as a function of pH.
The uncertainties in the constants are usually given asσlog10 X, so to use them in
Eq. (24), we have to use Eq. (22):

σKs,0 = ln(10)Ks,0σlog10 Ks,0

Eventually, we want to take logarithms of Eq. (24), since we usually plot log10 S
rather than S itself. We again use Eq. (22):

σlog10 S = σS

Sln(10)

Rounding

The standard rules to be used for rounding are:

i. When the digit following the last digit to be retained is less than 5, the last
digit retained is kept unchanged.

ii. When the digit following the last digit to be retained is greater than 5, the
last digit retained is increased by 1.

iii. When the digit following the last digit to be retained is 5 and

(a) there are no digits (or only zeroes) beyond the 5, an odd digit in the
last place to be retained is increased by 1 while an even digit is kept
unchanged.
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(b) other non-zero digits follow, the last digit to be retained is increased
by 1, whether odd or even.

This procedure avoids introducing a systematic error from always dropping or not
dropping a 5 after the last digit retained.

When adding or subtracting, the result is rounded to the number of decimal
places (not significant digits) in the term with the least number of places. In
multiplication and division, the results are rounded to the number of significant
digits in the term with the least number of significant digits.

In general, all operations should be carried out in full, and only the final results
should be rounded, in order to avoid the loss of information from repeated round-
ing. For this reason, several additional digits are carried in all calculations until
the final selected set of data is developed (see NEA Guidelines for data selection,
TDB-1), and only then are data rounded.

Significant digits

The uncertainty of a value basically defines the number of significant digits a value
should be given.

Example: 3.478± 0.008
3.48 ± 0.01
2.8 ± 0.4

In the case of auxiliary data or values that are used for later calculations, it is often
not convenient to round to the last significant digit. In the value (4.85± 0.26), for
example, the “5” is close to being significant and should be carried along a recal-
culation path in order to avoid loss of information. In particular cases, where the
rounding to significant digits could lead to slight internal inconsistencies, digits
with no significant meaning in absolute terms are nevertheless retained. The un-
certainty of a selected value always contains the same number of digits after the
decimal point as the value itself.

In some cases, reaction data obtained directly from equilibrium measurements,
have smaller uncertainties than the data of formation of the species involved in the
reaction. Using the data of formation for calculating the reaction data then leads
to unreasonably high uncertainties. A table of selected reaction data will therefore
be published in each volume.
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