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COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS 

The Committee on the Safety of Nuclear Installations (CSNI) is responsible for the Nuclear Energy 
Agency (NEA) programmes and activities that support maintaining and advancing the scientific and 
technical knowledge base of the safety of nuclear installations. 

The Committee constitutes a forum for the exchange of technical information and for collaboration 
between organisations, which can contribute, from their respective backgrounds in research, development 
and engineering, to its activities. It has regard to the exchange of information between member countries 
and safety R&D programmes of various sizes in order to keep all member countries involved in and 
abreast of developments in technical safety matters. 

The Committee reviews the state of knowledge on important topics of nuclear safety science and 
techniques and of safety assessments, and ensures that operating experience is appropriately accounted 
for in its activities. It initiates and conducts programmes identified by these reviews and assessments in 
order to confirm safety, overcome discrepancies, develop improvements and reach consensus on 
technical issues of common interest. It promotes the co-ordination of work in different member countries 
that serve to maintain and enhance competence in nuclear safety matters, including the establishment of 
joint undertakings (e.g. joint research and data projects), and assists in the feedback of the results to 
participating organisations. The Committee ensures that valuable end-products of the technical reviews 
and analyses are provided to members in a timely manner, and made publicly available when 
appropriate, to support broader nuclear safety. 

The Committee focuses primarily on the safety aspects of existing power reactors, other nuclear 
installations and new power reactors; it also considers the safety implications of scientific and technical 
developments of future reactor technologies and designs. Further, the scope for the Committee includes 
human and organisational research activities and technical developments that affect nuclear safety. 
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EXECUTIVE SUMMARY 

Background 

The main objectives of the current activity are the promotion, test and evaluation of various 
methodologies for uncertainty quantification in computational fluid dynamics (UQCFD) for nuclear 
reactor safety (NRS) applications. The assessment of the UQ methodologies was based on a blind test 
case from an experiment with a density gradient, which is of practical interest to NRS. The product is a 
synthesis report presenting a detailed assessment of numerical predictions – including the uncertainty 
bands – with measured data. This report was presented at the CFD4NRS-6 Workshop held in Boston in 
2016. 

The numerical benchmark exercise is restricted to single-phase flow, with turbulent mixing in the 
presence of density gradients, which is a typical situation encountered in many reactor issues, where 
computational fluid dynamics (CFD) is currently used. The exercise was based on the GEMIX 
experiment, which was carried out at the Paul Scherrer Institute (PSI) in Switzerland. Participants 
submitted a calculation for the blind test case, where they presented their predictions for mean velocity, 
turbulence kinetic energy and concentration profiles. All the results included uncertainty bands. Since 
some methodologies for UQCFD use data from a validation step (for the definition of the model, its 
calibration and/or extrapolation of errors), three open tests cases were provided to the participants. It is 
noteworthy to mention that for the blind test, the density ratio between the two mixing streams was 1%, 
which is much lower than the values encountered, for example, in pressured thermal shocks. 

In recent years, the use of CFD to address issues related to nuclear reactor safety has become very 
popular due to its higher (temporal and spatial) resolution compared to system codes. Reactor 
components where inherent three-dimensional phenomenaare taking place are particularly suited for 
these computational tools. For instance, the junction of the cold leg (CL) with the reactor pressure vessel 
(RPV) may be subjected to thermal stresses in pressurised thermal shock (PTS) scenarios. Accurately 
predicting three-dimensional (3D) flows with a sufficiently fine resolution cannot be handled by lump 
parameter codes, nor by system codes, which makes CFD the only option. 

Despite the enormous advances in conventional CFD (which involves single-phase turbulent flows) 
there are still questions about the level of accuracy of these simulations, which acquires a special 
relevance for licensing purposes. Although in CFD simulations, the number of parameters is much lower 
than that of system codes, the uncertainties associated with the mesh resolution, turbulence models, 
boundary conditions and numerical schemes still renders the use of these advanced tools to mere 
“demonstrations” in the context of NRS. 

There are several methodologies available nowadays for UQCFD, and most of them involve sampling 
the parameter space. Compared to system code, each CFD realisation might be orders of magnitude more 
expensive, and thus efficient methods, which can obtain a good estimation of the uncertainties with few 
samples, are needed. Therefore, the GEMIX benchmark exercise presents a unique opportunity to 
investigate the advantages and disadvantages of each method, which can provide valuable information 
when selecting a UQCFD for NRS applications. 
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Methods to assess model uncertainties can be divided into two classes: propagation methods and 
extrapolation methods. Propagation of uncertainty methods requires several steps: 

• identification of all uncertain input parameters; 

• determination of the uncertainty of all uncertain input parameters; 

• calculating a number of runs with each uncertain parameter being sampled according to the 
established probability distribution function (PDF); 

• from the runs, determination of the PDF of the figure(s) of merit or of any code response. 

Various propagation methods may differ by the use of random sampling or deterministic sampling, and 
by a possible use of meta-models (e.g. polynomial chaos expansion). 

Extrapolation methods measure the accuracy of predictions on some experiments (here on open 
GEMIX tests) and extrapolate the accuracy to the blind problem.  

There are also methods combining extrapolation for some sources of uncertainty (e.g. uncertainty due 
to physical model) with propagation of uncertainty for other sources of uncertainty (e.g. initial and 
boundary conditions). Extrapolation methods may also use some meta-models. 

Extrapolation methods may need a lower number of runs than propagation methods. Propagation 
methods may reduce the number of runs by using deterministic sampling rather than random sampling. 
The use of meta-models may reduce the number of runs if the number of uncertain parameters is not too 
high. 

Deliverables, expected results and users 

• Mean velocity, turbulence kinetic energy, and concentration profiles were predicted and 
compared to experimental values (GEMIX). 

• A synthesis was presented at the CFD4NRS-6 Workshop held in September 2016 and a detailed 
synthesis report on comparisons between numerical and measured data was produced. 

• Users are all actors in safety analysis and in nuclear fuel design. 

The exercise complements ongoing national programmes for the study nuclear safety, and European 
initiatives, such as NURESAFE (7th EU – FP). 

Safety significance of the current results 

The absence of UQCFD application to nuclear safety is a major limitation in the use of mature single-
phase CFD tools in safety demonstrations for licensing. 

Most single-phase issues – for which it was recognised that CFD may bring benefits – are mixing 
problems with or without density effects (buoyancy/stratification). The proposed activity addresses UQ 
for mixing problems in the presence of such effects, though with a limited density ratio and some 
incomplete experimental uncertainties. 

Main conclusions 

• Actors should be aware of the limitations of particle image velocimetry (PIV) when working 
with slightly inhomogeneous fluids. In this benchmark, we could not prove if the high values for 
the turbulence kinetic energy in the mixing layer, for a slightly inhomogeneous medium, is 
physical or not, but there is a suspicion of a measuring artefact. Turbulence kinetic energy was 
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therefore not considered in the evaluation and ranking of code predictions and of uncertainty 
quantifications. 

• A new measure (fidelity) has been proposed to assess UQCFD results. It is given by the 
convolution of the probability distributions of a predicted value and the corresponding 
experimental value, both assumed to be Gaussian. 

• The scatter in the results is less than expected given the complexity of the problem. For example, 
velocity profiles from all participants fall within a narrow band (±7%), close to experimental 
values. 

• Although the shape of concentration profiles was in general well predicted, a larger scatter was 
observed for the thickness of the mixing layer, indicating some problems when selecting the 
turbulent Schmidt number. Since the spreading of the mixing layer is primarily controlled by the 
turbulent Schmidt number, it seems logical to include this parameter as a source of uncertainty in 
future UQCFD analyses. 

• Very good results could be obtained with both uncertainty propagation method and combined 
accuracy extrapolation and uncertainty propagation methods. The top 3 users needed 6, 15 and 
836 simulations of the blind test showing that some methods may be used successfully with a 
low number of calculations at least in this rather simple case. Extrapolation methods may need a 
lower number of runs than propagation methods and propagation methods may reduce the 
number of runs by using meta-models, provided that the number of uncertain parameters is not 
too high. Such low numbers of runs may thus not be generalisable to other more complex 
problems, with more challenging geometries and boundary conditions. In addition, many 
preliminary calculations of open tests may have been necessary when using extrapolation 
methods, before the application to the blind test. 

• The participants using a combined method (propagation and extrapolation) obtained the best 
agreement with the blind data. However, this should be analysed with care, because if the 
experimental results – on which the extrapolated errors are based – have a large bias, the 
numerical results will reflect that, as seen with the (most likely) unphysically value for the 
turbulence kinetic energy. 

• Some methods give a very narrow band of uncertainties, while some others give a rather wide 
band of uncertainties. It may be linked to the input uncertainties taken into account, but possibly 
also to the characteristics of the methods themselves. The applicability of these methods, in the 
field of nuclear safety assessment, still raises questions to be further discussed and requires at 
least further testing and benchmarking. 

• The most important step in the UQCFD analysis is the proper characterisation of the input 
uncertainties. When analysing the scattering in the rankings from users employing the same 
turbulence model (e.g. k-Ɛ), it is clear that the turbulence model alone cannot be responsible for 
such variability in the results. As explained in the text, if we focus only on propagating a 
probability distribution function (PDF) through a mathematical model, the output PDF should be 
independent of the propagation method. The propagation method and turbulence model therefore 
must have a marginal influence in the present exercise. Since the users’ results were not used to 
perform a sensitivity analysis to determine the most influential variables, the last statement 
should be taken with precaution, as there is no definitive scientific proof to support it. 

• In the present exercise, it is clear that the results of some participants increase confidence in the 
applicability of UQCFD, for more realistic scenarios relevant for NRS. 
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• As a result of small density effects in the benchmark and small differences between open and 
blind tests, the extrapolation from open tests made the benchmark somewhat easier. Future 
benchmarks should investigate situations with stronger density effects and with more different 
conditions between open and blind tests. 
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1.  INTRODUCTION 

Claude-Louis Navier and Augustin-Louis Cauchy were born in 1785 and 1789 respectively. The world 
would have to wait another 30 years for George Gabriel Stokes to be born, to later complete the 
foundation of what would become known as the Navier-Stokes (NS) equations. This elemental set of 
equations constitutes, nowadays, the best mathematical description of fluid motion at the continuum 
level. These equations are thought to hold the mysteries of one of the unsolved problems in physics: 
turbulence. Much effort has been made to understand the mathematical behaviour of these equations, but 
their complexity has stubbornly deprived mathematicians from even being able to prove the existence of 
smooth solutions for three-dimensional (3D) flows. With the advancement of digital computers in the last 
decades, we have been able to solve discrete representations of the Navier-Stokes equations, with a high 
level of “accuracy”. Direct numerical simulations (DNS) have become the workhorse of many scientists, 
working on the most fundamental aspects of turbulence (e.g. intermittency). However, we must always 
bear in mind that as accurate a DNS solution might be, it will never be a real solution of the Navier-
Stokes equations. Without formal mathematical proof for the existence of smooth solutions, there is 
always the possibility that in those unresolved scales, singularities might exist. Thus, to study turbulence 
with our rudimentary numerical tools, we must accept the fact that our simulations might not be as 
accurate as we would like to think. In the eventuality that solutions are indeed smooth, then the only 
uncertainties that would arise in DNS are from numerical errors, which can easily be quantified. On the 
contrary, this sort of uncertainties would be of second order (or much lower) in the unfortunate case that 
there are some singularities in the solutions. This kind of uncertainty refers to how reliable are our 
numerical results, compared to a true solution of the NS equations. Not being certain of the existence of 
smooth solutions, this question does not have an answer. 

A different sort of uncertainty arises when evaluating the quality of the NS equations in representing 
the real world. The uncertainties described in the previous paragraph belong only to the mathematical 
realm, but when we want to assess how good the NS equations describe turbulence in real systems, 
additional sources of uncertainty appear. For instance, the need of physical properties such as density and 
viscosity, introduces instantaneously a certain level of uncertainty in our numerical solution. Whenever 
we use parameters that must be determined from experiments, we are introducing stochastic variables in 
our models. Thus, the naive notion that DNS simulations could predict perfectly experimental 
observations (even is the theoretical case of infinite computational power), dissipates quickly. Most of 
the practical work associated with turbulent flow, is currently carried out with the aim of a different 
mathematical representation of the NS equations. These are the so-called Reynolds Averaged Navier 
Stokes (RANS) equations, which are obtained by eliminating the time dependency through a time 
average. If the physical properties if the fluid are considered constant, a time average leads to a set of 
time correlation functions that are commonly known as the Reynolds stresses. Thus, the problems of 
turbulence only resort to finding the appropriate forms of these correlations. If we leave aside our worries 
about the existence of singularities in the NS equations, then if we could measure individually the 
Reynolds stresses everywhere in the domain and then use this results as parameters in the RANS 
equations (very much like the density and viscosity), then our computational fluid dynamic (CFD) results 
for mean velocity profiles should match those from the experiments very accurately (there would still be 
some uncertainties associated to numerical errors). Similar correlations appear when we filter the NS in 
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space, which account for subgrid scale turbulence in large eddy simulations (LES). Finally, uncertainties 
from initial and boundary conditions will also introduce a level of stochasticity in our CFD solutions. 

For practical applications to nuclear reactor safety, Direct Numerical (and to a less extent LES) 
simulation, require a computational power not currently available. Thus, most CFD analyses are carried 
out with RANS models. The GEMIX facility was originally designed to study the fundamentals of 
turbulent mixing, for a variety of Reynolds and Froude numbers. However, despite the fact that GEMIX 
was not initially intended for uncertainty quantification (UQ) studies, its small and simple geometry 
makes it a prime candidate for this purpose. Because all GEMIX test cases are steady state, this 
experimental facility offers an unparalleled advantage to assess UQ methodologies, at a relatively low 
computational cost. This is the main reason for selecting GEMIX for the first international benchmark on 
UQCFD. 
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2.  UNCERTAINTY SOURCES IN COMPUTATIONAL  
FLUID DYNAMICS 

We will start our discussion with the basic equations for fluid dynamics, that is, conservation of mass and 
momentum: 

Mass 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ∙ 𝐩𝐩 = 0 (1) 

Momentum 𝜕𝜕𝐩𝐩
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝐮𝐮𝐮𝐮) = −∇ ∙ σ⃡ + 𝐟𝐟 (2) 
with 𝜌𝜌 the density, 𝐩𝐩 = 𝜌𝜌𝐮𝐮 the linear momentum. The stress tensor σ⃡ = 𝑃𝑃𝐈⃡𝐈 − τ⃡ is expressed in terms 

of the pressure 𝑃𝑃 and the deviatoric stress tensor τ⃡ = 𝜇𝜇�∇𝐮𝐮 + ∇𝐮𝐮𝑻𝑻� + 𝜆𝜆∇ ∙ 𝐮𝐮, where 𝜇𝜇 and 𝜆𝜆 are the shear 
and second viscosities respectively. In this section, we will neglect possible uncertainties related to 
singularities in the Navier-Stokes equations and, thus, we will center our attention on physical properties, 
turbulence models, and boundary and initial conditions.  

2.1. Uncertainties in the physical properties 

Measuring physical properties with a high level of accuracy is not an easy task, even for straightforward 
properties such as density. For instance, measuring the density of water with an accuracy of ±0.001 gr/
cm3 has already been an important challenge [1]. In the case of water viscosity, different measurement 
techniques lead to slightly different values, whose difference is larger than the experimental uncertainties 
reported by each individual technique [2]. Although small, physical uncertainties could have an impact, 
for example, on high-fidelity DNS and/or simulations of extremely large systems (e.g. oceanic 
simulations). To the best of our knowledge, no UQ analysis assessing the influence of uncertainties in 
physical properties on DNS has ever been presented in the open literature. For conventional CFD 
simulations (i.e. RANS and LES), uncertainties in the physical properties appear to have a lower 
relevance compared to the uncertainties in the turbulence modes used to estimate the Reynolds stresses. 
However, no such assessment has ever been carried out.  

2.2. Uncertainties in turbulence models 

The dominant uncertainties in turbulence models arise from the lack of knowledge of the pair correlation 
functions obtained from applying a time averaging or space/time filtering to the Navier-Stokes equations. 
A filtered velocity field is defined as 

〈𝐮𝐮(𝐱𝐱, 𝑡𝑡)〉 = lim
𝑇𝑇→∞

∫ 𝐮𝐮(𝐱𝐱, 𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑𝑇𝑇/2
−𝑇𝑇/2 = 𝐔𝐔(𝐱𝐱, 𝑡𝑡)  (3) 

Since the kernel function must satisfy lim
𝑇𝑇→∞

∫ 𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑𝑇𝑇/2
−𝑇𝑇/2 =1, we obtain a time average by taking 

𝑔𝑔(𝑡𝑡 − 𝜏𝜏) = 1 𝑇𝑇⁄ . This results in an averaged velocity field that is time independent. Thus, any further 
filtering operation will not change the averaged field. If we now use a rectangular pulse with a finite 
width 𝑇𝑇0, then the kernel function is given by 
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𝑔𝑔(𝑡𝑡 − 𝜏𝜏) = �1 𝑇𝑇0      𝑓𝑓𝑜𝑜𝑜𝑜   |𝑡𝑡 − 𝜏𝜏| ≤ 𝑇𝑇0 2⁄⁄
0               𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (4) 

The operation defined in Eq. (3) is a convolution and, thus, the spectrum of the filtered field is given 
by the multiplication of the individual spectra: 

𝐔𝐔�(𝑥𝑥, 𝑞𝑞) = 𝐮𝐮�(𝑥𝑥, 𝑞𝑞)𝑔𝑔�(𝑥𝑥, 𝑞𝑞) (5) 

The spectrum of the square pulse is shown in Figure 1and is given by 𝑔𝑔�(𝑥𝑥, 𝑞𝑞) = sin (𝜋𝜋𝑞𝑞𝑞𝑞0) 𝜋𝜋𝑞𝑞𝑞𝑞0⁄ . 
Although highly attenuated, harmonics with frequencies higher than 𝑞𝑞0 = 1 𝑇𝑇0⁄  are still present in the 
spectrum of the filtered velocity field. 

Figure 1. Spectrum of the unitary square pulse 

 
Despite that using a square pulse—as the filter kernel—may appears analogous to using a uniform 

mesh (in time and/or space), this is not the case. Even experienced CFD practitioners have misinterpreted 
the use a numerical mesh to be equivalent to a filtering operation with a pulse width equal to the mesh 
spacing. Although the use of high order polynomials might help us in reconstructing a continuous filtered 
velocity field from a set of discrete points, the resultant velocity field will never be the same as the true 
continuous filtered field. Even in the case of spectral methods, the reconstructed field will not match the 
true one due to a truncation error in the polynomial series.   

When we apply a time average, the mathematical operation can be represented by a Reynolds operator 
ℛ, which satisfy a given set of rules. However, when filtering the Navier Stokes equations over a finite 
time/space interval, the applied operator does not satisfy invariance upon successive operations and, thus, 
it cannot be considered a Reynolds operator. The invariance upon successive applications is expressed 
mathematically as 

ℛ�ℛ(𝜙𝜙)� = ℛ(𝜙𝜙) (6) 

This rule is not strictly satisfied in Unsteady RANS or LES formulations respectively (see details in 
the Appendix A). To simplify the analysis, we will write the filtered momentum equation in its more 
recognisable form, 

𝜕𝜕𝐮𝐮�
𝜕𝜕𝜕𝜕

+ ∇ ∙ 〈𝐮𝐮�𝐮𝐮�〉 + ∇ ∙ 〈𝐮𝐮′𝐮𝐮′〉 = −
1
𝜌𝜌
∇𝑃𝑃� + ∇ ∙ (ν∇𝐮𝐮� + ν∇𝐮𝐮�𝑇𝑇) +

1
𝜌𝜌
𝐟𝐟̅+ 𝐟𝐟𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄       (7) 
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where we have put all the missing terms in the correcting force 𝐟𝐟𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄. The dominant uncertainty in 
turbulence models arise from the Reynolds stresses (we will use this term indistinctly to refer to the 
averaged fluctuating tensor correlation obtained from RANS or LES filters). We can express the 
Reynolds stresses in terms of the mean/filtered velocity field through the following relation 

−〈𝐮𝐮′𝐮𝐮′〉 ≡ 𝜈𝜈𝑡𝑡 ∘ (∇𝐮𝐮� + ∇𝐮𝐮�𝑇𝑇) −
2
3
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝐈⃡𝐈                                   (8) 

where 𝜈𝜈𝑡𝑡 is a second rank symmetric tensor. Expressing the Reynolds stresses in this manner would 
allow us to obtain the viscosity tensor from DNS,  

𝜈𝜈𝑡𝑡 = �
2
3
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝐈⃡𝐈 − 〈𝐮𝐮′𝐮𝐮′〉� ∘ (∇𝐮𝐮� + ∇𝐮𝐮�𝑇𝑇)−1                                (9) 

DNS data could be used to test several assumptions made on turbulence models. This expression has a 
direct connection to the Reynolds Stress Model, where individual equations are solved for each of the 
components of the Reynolds stress tensor. The viscosity tensor gives us information about how 
correlated the pair correlation functions are with the strain rate of the mean velocity field. A tensor with 
no off-diagonal terms and a constant value in the diagonal, would indicate that the fluctuating correlation 
function can be represented exactly as an isotropic diffusional phenomenon. This is the assumption in the 
Boussinesq approximation, which is used in most of the conventional RANS models and subgrid scale 
models in LES. Since the viscosity tensor has the same units as its kinematic molecular counterpart, an 
isotropic tensor can be expressed in terms of a velocity and a length scale. For an isotropic tensor, we 
have 

𝜈𝜈𝑡𝑡 = 𝜈𝜈𝑡𝑡𝐈⃡𝐈                                                                   (10) 

with the turbulent eddy viscosity, proportional to 

𝜈𝜈𝑡𝑡 ∝ 𝑉𝑉 × 𝐿𝐿                                                                 (11) 

Since we assume that the fluctuating part of the velocity field is responsible for transporting 
momentum in a diffusion like manner, it is logical to consider that the velocity scale should be obtained 
from velocity fluctuations. For an incompressible flow, the trace of the Reynolds stress tensor is equal to 
twice the turbulence kinetic energy, that is, 

𝑇𝑇𝑇𝑇(〈𝐮𝐮′𝐮𝐮′〉) ≡ 2𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇                                                       (12) 

The trace of a tensor is a fundamental quantity that represents an invariant upon rotation, even for 
anisotropic tensor fields. A quantity that is invariant upon rotation is highly desirable when looking for a 
proper velocity and length scale. We would not want to have our fundamental scales defined in terms of 
quantities that change upon rotation of the co-ordinate system. Thus, an evident velocity scale based on 
the turbulence kinetic energy satisfy two conditions: Rotational invariance and a direct association to the 
fluctuating velocity field, 

𝑉𝑉 = �𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇                                                                (13) 
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For isotropic turbulence, this definition coincides with the RMS value of the velocity fluctuations. A 
more delicate situation arises when determining the appropriate length scale. Based purely on 
dimensional grounds, a length scale can be obtained by combining the viscous dissipation and the 
turbulence kinetic energy 

𝐿𝐿 =
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇

3/2

𝜀𝜀
                                                            (14) 

where the viscous dissipation of the fluctuating field is defined as 𝜀𝜀 = 𝜈𝜈〈∇𝐮𝐮′: (∇𝐮𝐮′ + ∇𝐮𝐮′𝑇𝑇)〉. Although 
dimensionally correct, this length scale does not appear to be the most appropriate one. The term 
〈∇𝐮𝐮′: (∇𝐮𝐮′ + ∇𝐮𝐮′𝑇𝑇)〉 has units of frequency square and, thus, provides a measure of the RMS frequency 
of eddies. Hence, this term appears to be more appropriate for a time scale. Utilising this time scale, we 
could define a new length scale (Taylor scale) as  

𝐿𝐿 = �
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇

〈∇𝐮𝐮′: (∇𝐮𝐮′ + ∇𝐮𝐮′𝑇𝑇)〉 = �
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇
ε 𝜈𝜈⁄

                                           (15) 

Considering the conventional length scale used in RANS models Eq.(14), the eddy viscosity is written 
as 

𝜈𝜈𝑡𝑡 = 𝐶𝐶𝜇𝜇
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇2

𝜀𝜀
                                                              (16) 

Using the new length scale Eq. (15), this quantity would be given by   

𝜈𝜈𝑡𝑡 = 𝐵𝐵𝜇𝜇
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇

〈∇𝐮𝐮′: (∇𝐮𝐮′ + ∇𝐮𝐮′𝑇𝑇)〉1/2 = 𝐵𝐵𝜇𝜇
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇
�𝜀𝜀 𝜈𝜈⁄

                                (17) 

This short analysis is only intended to show that uncertainties in the most fundamental quantities in 
RANS models (i.e. eddy viscosity), arise not only from uncertainties in the constant 𝐶𝐶𝜇𝜇, but also from the 
very definition of the length scale. 

2.3. Boundary and initial conditions 

Uncertainties in boundary and initial conditions are usually neglected in CFD simulations. The lack of 
knowledge of boundary condition, plus the tediousness of UQ analyses, render their study essentially to 
the academic world. However, we have seen in the present benchmark that the inlet boundary condition 
plays a relevant role in the final measure of uncertainty. Aside from this type of uncertainties, there 
might be uncertainties related to the geometry due to, for instance, manufacturing tolerance. Initial 
conditions can also be important. For example, it is well known that when emptying a container with a 
liquid (e.g. a bottle full of water), the flow pattern of the liquid exiting the container, will be quite 
different if the fluid is initially still or has a strong rotational velocity. Thus, neglecting an initial 
rotational component will most likely lead to large errors. 
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2.4. Numerical errors 

Although numerical errors do not constitute an uncertainty source, they also affect the level of 
accuracy of a numerical simulation. The most dominant errors derive from the discretisation of the 
differential operators in partial differential equations (e.g. Laplacian, gradient, partial derivative respect 
to time, etc.). Rounding errors, such as those found in the solution of the linear systems, might also 
contribute substantially to numerical errors if the solutions are not fully converged. Numerical errors are 
strongly correlated to the user’s experience, where for instance, a good quality mesh can make a big 
difference in the final results. The use of a Best Practice Guideline can mitigate, to a certain extent, the 
influence of numerical errors. However, these guidelines must not be considered as CFD laws and should 
be reviewed case by case. Ultimately, the experience of the CFD practitioner is the best tool for error 
optimisation.    

Figure 2. Sources of errors and uncertainties in CFD. 

Type the subtitle here. If you do not need a subtitle, please delete this line. 

 
  



20 │ NEA/CSNI/R(2017)19
 

3. UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL FLUID
DYNAMICS 

There is a plethora of articles addressing uncertainty in numerical simulations in general. However, the 
literature is much more reduced when it comes to computational fluid dynamic (CFD) due to the 
computational cost associated to it. More details about uncertainty methods currently used in CFD can be 
found in (NEA/CSNI/R(2016)4). Nowadays, uncertainty quantification (UQ) methods can be split into 
two groups: Propagation and extrapolation. The former propagates uncertainties in input parameters to 
the CFD solution, while the latter extrapolate physical errors in the model –estimated from integral effect 
test (IET)– to a different case scenario. These two methodologies have negative and positive aspects 
associated to them. For instance, in propagation methods the determination of input uncertainties is a 
major challenge, while the propagation of these uncertainties through the mathematical model is usually 
straightforward. For extrapolation methods, the main problem lies on the quality of the experimental data 
and how representative are the IETs of the new case scenario. For example, if we use a database for fully 
turbulent flows to find the accuracy of CFD simulations, the error will not be representative when the 
same model is used to simulate transitional flows. The IETs can additionally be used to calibrate the 
numerical models. It is also possible to combine these two techniques, as some of the users already did in 
the present benchmark, to arrive at a very robust uncertainty quantification in computational fluid 
dynamic (UQCFD) methodology.  
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4. EXPERIMENTAL TEST SECTION

The confined wake flow water mixing experiments in the GEMIX facility, focus on the basic turbulent 
mixing mechanisms for unstratified and stably stratified conditions. A simplified schematic of the test rig 
is shown in Figure 3. The flow channel is made of acrylic glass to enable optical access, except for the 
last 80 mm of the splitter plate, which is made of stainless steel to avoid deformation of the splitter plate 
tip. The main design parameters for the GEMIX flow channel are listed in Table 1. The co-ordinate 
system to describe the velocity and concentration fields is located at the tip of the splitter plate and its 
origin is placed in the middle of the channel. The x-co-ordinate represents the stream-wise direction, the 
y-coordinate the crosswise and the z-co-ordinate the spanwise direction (see Figure 3).  

Figure 3. Schematic of the GEMIX test rig 

The inlet section comprises the lower and upper legs, where the two co-flowing water streams are 
initially separated by the splitter plate. Upper and lower legs are equipped with flow conditioning 
devices, where both streams pass through a single honeycomb, two identical coarse grids and a single 
fine grid, such that the velocity profiles at the splitter plate tip appear almost equal in shape and free from 
rotational components. The wire diameter d, mesh width w and upstream location of the braided flow 
conditioning grids as well as the diameter d, length l and rear edge position of the circular cell 
honeycombs are listed in Table 1. For the experiments, each leg of the inlet section is supplied with the 
same volumetric flow rate from an individual pumping line connected to its own individual water storage 
tank of 2 000 l capacity, enabling separate conditioning for each stream. One storage tank contains tap 
water, while the other one contains either de-ionised water or a solution of de-ionised water and sucrose 
to increase the density of the lower stream to establish stable stratified flow conditions. Sucrose is used to 
increase the density of the lower stream instead of salt, because it makes only minor changes to the 
electrical conductance of the water. However, and due to the decrease in the mobility of charge carrying 
ions in the presence of sucrose, a complex calibration procedure – taking into account the initial 
conductivity of the applied water as well as both sugar concentration and temperature – was used to 
convert primary measuring signals of wire mesh sensor (WMS) into dimensionless transport scalars [4]. 
The mass fraction of sucrose in conjunction with a temperature adjustment is used to compensate 
partially for changes in the electrical conductance, and to alter the density differences between the 
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streams while keeping the kinematic viscosity (and therefore the Reynolds Numbers 0Re ) of the two 
streams approximately identical to that of pure water at 1 bar, 20°C (see Table 1). 

Figure 4. Inlet conditioning section 

Figure 5. Mixing section 

The mixing section assembly in which both streams interact and form the wake mixing zone past the 
splitter plate tip, is attached to the inlet section. The square mixing section is composed by non-
adjustable walls with a cross-sectional area of 50×50 mm2 and a length of 550 mm. The mixing section 
can be assembled by a single segment of 550 mm in length when particle image velocimetry (PIV) or 
laser-induced fluorescence (LIF) is applied to measure the mixing process, or by two segments of 
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different length to place a wire-mesh sensor in the cross-sectional area at various downstream distances. 
Only one wire-mesh sensor is placed in the mixing section; therefore, to measure cross-sectional 
concentration profiles at several locations, different experiments are needed (one per each location of the 
wire-mesh sensor). The outlet section is aligned to the mixing section and consists of an additional 
straight channel segment of 1 m in length, a flow splitter device and a water box with a spillover weir. At 
the end of the additional straight channel segment, the flow is split again into two streams to minimise 
possible feedback effects of the water box to the developing wake flow upstream. The rectangular water 
box has a volume of 40 l and a spillover weir that maintains constant back pressure of 250 mm head in 
the channel for all flow rates. The mass flow rates, densities and temperatures of the two streams are 
recorded for each experimental run and the measured data is stored and processed on a computer.  

Table 1. Main design parameters of the GEMIX flow channel geometric dimension 
in mm).The flow conditions correspond to those in the full experimental campaign. 

Inlet section length 1 250 

Inlet section height × width 25×50 (2×) 

Splitter plate angle 3 

Honeycomb d = 2, l = 50 @ x = -670 

1. Grid d = 1, w = 4 @ x = -520 

2. Grid d = 1, w = 4 @ x = -300 

3. Grid d = 0.4, w = 1.25 @ x = -80 

Mixing section length 550 

Mixing section height × width 50×50 

Total channel length 3000 

Nominal inlet velocities 0.2-1.2 m/s 

Re-Numbers in mixing section 10 000 – 60 000 

Volumetric flow rate 15 – 90 l/min 

Density difference 0 – 10% 

Temperature difference 0 – 50K 

Viscosity difference 0 – 100% 

Streamwise turbulence level 5% 
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Figure 6. Schematic of GEMIX Geometrical information of the CFD domain is provided in 
the top image. Comparison between simulations and experimental results will be carried out 

using several profiles at the center plane of the mixing section 
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5.  EXPERIMENTAL UNCERTAINTIES 

The accuracy of volumetric flow rate –as monitored by the Coriolis flow metres– was ±0.15%. The error 
associated to the density measurement was estimated to be ±0.01 kg/m3. The relative difference between 
the volumetric flows in the upper and lower legs of the inlet section, which determines the accuracy of 
the isokinetic condition 𝑢𝑢0 = 𝑢𝑢1 = 𝑢𝑢2, was kept below (𝑉̇𝑉1 − 𝑉̇𝑉2)/𝑉̇𝑉1 ∙ 100 ≤ ±1% for all experiments. 
Since we can only measure estimators for mean and RMS values from the experimental data (PIV, laser 
Doppler anemometry – LDA and LIF), a quantification of the statistical uncertainty associated to these 
estimators is required. Thus, the mean and RMS values provided in the experimental data files have a 
level of uncertainty, characterised by an interval of confidence. For mean values, the interval of 
confidence was determined from the Student’s distribution, while for RMS values, a nonparametric 𝛸𝛸2-
test was applied. Since the Student’s distribution is symmetric, the upper and lower bands – 
corresponding to the 95% interval of confidence – are also symmetric. However, the 𝛸𝛸2distribution is not 
symmetric and therefore the upper and lower bands are slightly asymmetric with respect to the RMS 
value. The uncertainty for the turbulence kinetic energy was estimated by combining the individual 
uncertainties of the diagonal components of the Reynolds stress tensor, that is: 

∆𝑘𝑘 = �𝑈𝑈12 + 𝑈𝑈22 + 𝑈𝑈32,  (18) 
where each uncertainty was calculated as: 

𝑈𝑈1 = 𝜕𝜕𝜕𝜕
𝜕𝜕〈𝑢𝑢′𝑢𝑢′〉

∙ 𝜎𝜎(〈𝑢𝑢′𝑢𝑢′〉),   𝑈𝑈2 = 𝜕𝜕𝜕𝜕
𝜕𝜕〈𝑣𝑣′𝑣𝑣′〉

∙ 𝜎𝜎(〈𝑣𝑣′𝑣𝑣′〉),   𝑈𝑈3 = 𝜕𝜕𝜕𝜕
𝜕𝜕〈𝑤𝑤′𝑤𝑤′〉

∙ 𝜎𝜎(〈𝑤𝑤′𝑤𝑤′〉). (19) 

On locations where only the x- and y-components of the velocity could be measured (i.e. all PIV 
results and some LDA results), we assume the spanwise z-component to be equal to the vertical velocity 
component: 

∆𝑘𝑘 = �𝑈𝑈12 + 2 ∙ 𝑈𝑈22 (20) 
In addition to the statistical uncertainty, the signal to noise ratio (SNR) introduces additional 

uncertainties to the LIF measurements of the concentration field. The SNR and statistical uncertainties 
were combined into a single value for LIF data. WMS data have been discarded for the present 
benchmark, because its associated uncertainty has not been fully clarified.   

5.1. Other sources of uncertainties 

As it will be seen in the results section, the values of the turbulence kinetic energy are rather high in 
the mixing layer for the cases with a small density difference (see Figure 17). Although we intensively 
discussed this issue at PSI, there is still not a satisfactory explanation for these results. For the test cases 
with density difference, the refraction index changes slightly within the mixing section, but its change is 
very small. Table 2 shows the refraction index for densities near the ones used in the experiments. 
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Table 2. Refraction index of water as a function of the sucrose content. 
Source: http://homepages.gac.edu/~cellab/chpts/chpt3/table3-2.html 

Sucrose concentration wt% Density (g/cm3) Refraction index 

0 0.9982 1.3330 

1 1.0021 1.3344 

2 1.0060 1.3359 

3 1.0099 1.3374 

4 1.0139 1.3388 

 

The data shows that a change of 2.7 wt% in the sucrose content, leads to a change of 0.3% in the 
refraction index. To estimate the influence of such a small refraction index change, we made use of a 
simple model to calculate the trajectory of a light beam crossing an inhomogeneous medium. The 
differential equation reads: 

𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝑛𝑛
𝜕𝜕𝐫𝐫
𝜕𝜕𝜕𝜕�

= ∇𝑛𝑛                                                          (21) 

with 𝐫𝐫 the light beam trajectory, 𝑛𝑛 the refraction index and 𝑙𝑙 the displacement along the light beam 
trajectory. More advanced models based on the geodesic path of a light beam crossing an inhomogeneous 
medium could be used [5], but we only needed an estimation of the error. The result of this calculation 
can be seen in Figure 7. When calculating the error in the particles’ position, we must assume that the 
light source is located at the camera sensor and, thus, a good estimation of this error can be obtained by 
calculating the variation in position of a light beam at the boundary of the square channel (assuming the 
light source located at the centre of the channel). This simple calculation shows that even for a medium 
slightly inhomogeneous (small density difference), the fluctuating concentration introduces a small error 
in the particles position. Depending on the algorithm used to calculate the cross-correlation between two 
consecutive images, the error in the measurement of RMS values could be rather large. For the time 
being there are no established procedures to calculate/estimate the errors in RMS values for 
inhomogeneous media. 

http://homepages.gac.edu/%7Ecellab/chpts/chpt3/table3-2.html
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Figure 7. Calculated trajectory of a light beam across an inhomogeneous medium  
(black continuous line). The colour scale represents the instantaneous concentration obtained with 
a Wire Mesh Sensor. The red-dashed line corresponds to the case of a completely homogeneous 
medium (straight line). 

 
The results found in the GEMIX experiment –regarding the velocity fluctuations in slightly 

inhomogeneous media– is something to keep in mind for future experiments. PIV is a non-intrusive 
experimental technique that allows for obtaining important information about the velocity field (and its 
fluctuations). However, there are still many sources of uncertainties not fully clarified and usually 
neglected. For instance, PIV measurements are usually accompanied by error bars that contain only 
statistical uncertainty. Nonetheless, uncertainties regarding the algorithms for processing the images, 
interrogation windows size, the influence of the light intensity, seeding concentration and the influence 
of inhomogeneities in the propagating light media, are never accounted for. Although we should have 
included these uncertainties in the experimental results, a lack of human resources precluded us from 
doing so. In the impossibility of fully clarifying what are the uncertainties for the turbulence kinetic 
energy, we did not include the experimental points lying within the mixing layer in the elaboration of the 
ranking tables. Thus, the ranking table for the turbulence kinetic energy should be considered with 
precaution for the case of the density difference of 1%. The turbulence kinetic energy reported from the 
PIV measurements in the case without density stratification, is of course unaffected. In the future, 
experimental results – without all the sources of uncertainties clearly identified – should not be 
considered for a UQCFD analysis. This clearly poses an additional burden to the experimental teams 
preparing and designing CFD grade experiments, but if the experimental uncertainties are uncertain, then 
a UQCFD analysis becomes meaningless. Figure 8 shows a comparison of the velocity and turbulence 
kinetic energy profiles for blind test case (red) and its counterpart without density difference (blue). 
Although the average velocity profiles are very similar between the two experiments, the turbulence 
kinetic energy within the mixing layer differs greatly from one another. It is still unclear, from a 
theoretical point of view, how much a small density difference can affect the turbulence kinetic energy. 
In the RANS equations, there are double and triple correlation functions that are always omitted, but that 
could potentially have an impact on the results. 
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Figure 8. Mean velocity profiles and turbulence kinetic energy profiles at two locations inside 
the mixing section. Upper and lower profiles correspond to the mean velocities and 

turbulence kinetic energy respectively. 

 
These correlations are obtained by applying a time average and the Reynolds decomposition to total 

kinetic energy,  

〈𝑘𝑘〉 =
𝜌̅𝜌𝐮𝐮� ⋅ 𝐮𝐮�

2
+ 𝜌̅𝜌 �

〈𝐮𝐮′ ⋅ 𝐮𝐮′〉
2

+
1
𝜌̅𝜌
〈𝜌𝜌′𝐮𝐮′〉 ⋅ 𝐮𝐮� +

1
2

1
𝜌̅𝜌
〈𝜌𝜌′𝐮𝐮′ ⋅ 𝐮𝐮′〉�                     (22) 

Since for the blind test case the density difference is very mild, it is not clear whether these additional 
correlations may influence the results in a significant manner. Our feeling is that the high values for the 
turbulence kinetic energy within the mixing layer derives from an experimental artefact, but we cannot 
confirm this. 
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6. EXPERIMENTAL TEST MATRIX

The complete campaign in the GEMIX facility comprises experimental conditions with inlet mean 
velocities ranging from 0.2 to 1 m/s and density ratios of 0 to 10%, leading to a total of thirty 
independent cases. Nonetheless, for this benchmark exercise only four experiments will be considered – 
three will be disclosed and one will be kept secret for the blind calculations. 

Table 3. Experimental matrix for this benchmark 

Inlet mean velocity 0.6 m/s 1 m/s 

Global Re-number 30 000 50 000 

Δρ = 0%, ΔT = 0K N339 N337 

Δρ = 1%, ΔT = 2.5K N320 N318 

The selected experiment for the blind calculation is N318. Inlet boundary conditions will be provided 
for all the experiments. However, velocity, Reynolds stresses (u’u’, u’v’, v’v’) and concentration profiles 
inside the mixing section –at the locations shown in Figure 4– will be provided only for the other three 
cases. These data can be used freely by the participants, for instance, to calibrate physical models, mesh 
improvement or to obtain the uncertainty band in extrapolation methods. 
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7. PHYSICAL PROPERTIES

The physical properties of water for the experiments considered in this benchmark exercise are listed in 
Table 4. Properties of de-ionised as well as tap water were considered identical.  

Table 4. Physical properties for tap/de-ionised water and for the mixture de-ionised water + 
sucrose 2.7 wt% 

Tap / de-ionised water @ 20C De-ionised water + sucrose @ 22.5C 

( )mKWk 0.6 0.6 

( )kgKkJCp 4.18 4.18 

( )3mkgρ 998 1008 

( )smN 2m 1.002 0.991 
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8.  MEASURING THE INLET BOUNDARY CONDITIONS  

Mean velocities and their associated fluctuations were measured with LDA in one quadrant of the upper 
leg 50 mm upstream the tip of the splitter plate (see Figure 5). Figure 6 shows the location of the 
measuring points for the inlet boundary condition. Due to limitations in optical access, the three velocity 
components could only be measured at the locations marked in pink. The black markers correspond to 
the location were only two velocity components were measured (x,y). Hence, in the data files for the inlet 
boundary conditions, the RMS values of the z-component were filled with zeros for those locations.  

To construct the whole upper leg inlet boundary condition, symmetry was assumed among the four 
quadrants. Because the Reynolds number for both legs is the same (even for a Δρ = 1%), the inlet 
boundary condition for the lower leg was obtained by applying symmetry once again along the z-co-
ordinate. Since LDA measurements at each point are time consuming, it was decided to measure only the 
upper leg. The distribution of the measuring points in the cross-sectional area of the conditioning section 
is shown in Figure 6. The experiments were performed at room temperature and, therefore, heat losses 
can be considered negligible, even for the case with Δρ = 1% where the temperature in the lower leg is 
slightly higher (2.5 °C) than that of the upper leg. 

Figure 9. Location of the LDA measurement plane. These measurements were used to 
determine the inlet boundary condition for the CFD simulations. 

 
 

It is important to remark the LDA measuring plane for inlet boundary condition was inclined 
1.5°respect to the yz-plane to obtain a streamwise velocity profile parallel to the surface of the splitter 
plate, hence, the x-co-ordinate of the measuring points changes slightly for each value of the y-co-
ordinate. The files containing the experimental measurements of the inlet boundary conditions have the 
proper co-ordinates in the xyz Cartesian system. The time averaged velocity at each point was calculated 
according to: 

𝑢𝑢� = 1
𝑁𝑁
∑ 𝑢𝑢𝑖𝑖𝑁𝑁
𝑖𝑖=1 ,                       (23) 
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where N correspond to the total number of samples and 𝑢𝑢𝑖𝑖 is the instantaneous velocity at a given point. 
The RMS of velocity fluctuations was calculated by: 

( )∑ =
−

−
=′ N

i iRMS
uu

N
u

1
2

1
1 (24) 

Figure 10. Location of the measuring points for velocity inlet boundary 
conditions with LDA 

Since the available LDA system enables for one-dimensional pointwise measurements of the 
instantaneous velocities, the three components of the velocity fluctuations cannot be measured 
simultaneously. Hence, the three components of the velocity fluctuations were measured by re-orienting 
the LDA system in different directions. For the points where the three velocity components were 
measured (pink markers in Figure 10), the turbulence kinetic energy was calculated according to: 

( )
RMSRMSRMS

wvuk ′+′+′=
2
1

   (25) 

For the locations where only two velocity components are available (black markers in Figure 10), the 
turbulence kinetic energy is obtained by: 

( )
RMSRMS

vuk ′+′= 2
2
1

     (26) 

The mean velocity profile obtained from the LDA measurements at the inlet of the CFD domain is 
presented in Figure 11. This figure also shows the location of the measuring points. Points located at the 
walls were assigned with null values. 
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Figure 11. LDA mean velocity profiles at the inlet of the CFD domain (50 mm behind the tip 
of the splitter plate) 

Because the Reynolds number was the same for Δρ = 0% and Δρ = 1%, the velocity profiles and 
turbulence quantities are assumed to be equal for these two cases. 
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9. GENERAL INFORMATION ABOUT THE SUBMISSIONS

9.1. Registered participants 

There were a total of 21 registered participants from 13 countries (Table 5). All participants received the 
specifications and the experimental data files to performed their UQ analyses. However, only 
13 participants from 9 countries completed the task. 

Table 5. List of participants by country and their submission status 

Country Status 
France OK 
France OK 
France OK 
France OK 

Hungary No results 
Italy No results 

Korea OK 
Korea No results 

Netherlands OK 
Poland OK 
Russia OK 
Russia No results 
Russia No results 

Slovenia No results (work done, but not delivered) 
Spain OK 

Sweden OK 
Switzerland No results 

United Kingdom OK 
United States OK 
United States OK 
United States No results 
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10. ABOUT THE SUBMISSIONS

In Table 6, we summarise the most important information about each individual submission. One can see 
that the number of simulations required to perform the UQCFD analysis varied over a broad spectrum. 
For example, user-11 required only 4 simulations, while user-03 needed a staggering total of 836 runs to 
complete the analysis. Regarding turbulence models, the most employed model was 𝑘𝑘 − 𝜀𝜀 (including all 
its variants) with 5 submissions, followed by 𝑘𝑘 − 𝜔𝜔 with 4, large eddy simulation (LES) with 2, and root 
mean square (RMS) with 1. It is noteworthy to mention the incredible effort made by user-18, who used 
LES and needed a total of 22 simulations to obtain the UQCFD results. In terms of software usage, the 
commercial packages developed by ANSYS (fluent + CFX) were used 5 times, followed by Star-CCM+ 
with 2. The rest of the participants used either open source or in-house codes. Code_Saturne had the 
highest number of users (2), followed by CUPID, TrioCFD, P2REMICS and OpenFOAM having each of 
them only 1 user. For the UQ methodology, 10 users considered only a propagation step and 3 users 
propagation + extrapolation. Among the most used propagation methods was Polynomial Chaos 
Expansions with 4 users, followed by Monte Carlo (2) and Deterministic Sampling (2). All the other 
methods were used only once. For additional information on each method, the reader is referred to the 
Appendix B and the references therein. 

Table 6. Additional details of the individual submissions 
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11.  RANKING THE SUBMISSIONS ACCORDING TO SPECIFIC 
MEASURES 

To generate a ranking for the submissions, it was necessary to establish a measure that account for: the 
difference between calculated and experimental mean values, uncertainty level of the CFD simulations, 
and the proper shape of the required profiles. These constrains impede the use of a linear measure, such 
as the one used in the previous OECD-PANDA benchmark, which is given by  

∑
=

−=
dataN

i
ii

data

ES
N

M
1

1                           (27) 

where iS  and iE  represent the simulated and experimental values respectively, and Ndata the total 
number of data points used in the analysis. If we take for example the velocity profile shown in 
Figure 12, it is seen that the flat uniform velocity profile (blue line) would lead to a lower value for M 
compared to the red profile. However, the red velocity profile is of a higher physical significance than 
the uniform profile. Another important issue to note is that in this benchmark exercise, the comparison 
between simulations and experiments must also account for uncertainty bands. 

Figure 12. Schematic comparison between two simulated velocity profiles (continuous lines) 
and experiments (symbols) 

 
Depending on the type of UQ method used by each participant, the uncertainty band could be related 

to a certain quantile of a probability density function, to an interval (min, max) or to a member function 
(fuzzy variable). Therefore, a standardised measure that accounts for all these possibilities becomes 
highly complex. To simplify the analysis, a unique measure –based on a Gaussian distribution– is 
proposed. Let us imagine that the experimental and simulated values are represented by two Gaussian 
distributions –each characterised by a mean and standard deviation– then a normalised measure of the 
overlap between the two distributions would indicate how close the simulations and experiments are.  
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Figure 13. Schematic representation of the overlapping degree density   (fidelity density) 
between two Gaussian distributions (filled blue) 

 
We define then the degree of overlap or fidelity of the numerical simulations by: 
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where the ( )xω  is the fidelity density (overlap degree), and the subscripts sim and exp stand for 
simulation and experiment. Equation (28) can clearly be written as a convolution of two normal 
distributions, that is: 

Ω(𝑥𝑥) = � 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒
2𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁�𝑥𝑥, 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒,𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒� ∗ 𝑁𝑁(𝑥𝑥, 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠,𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠)�
1/2

(30) 

This allows us to find a simple analytical solution for the fidelity, avoiding the need to calculate 
explicitly the integral in Eq. (28). Thus, the fidelity is expressed as: 

Ω(𝑥𝑥) = 𝛽𝛽(𝑥𝑥)−1/2𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝛼𝛼(𝑥𝑥)
4𝛽𝛽(𝑥𝑥)

�     (31) 

With 𝛼𝛼(𝑥𝑥) = ��𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠� 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒� �2 and 𝛽𝛽(𝑥𝑥) = 1 + �𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒⁄ �2. The coefficient 𝛼𝛼 is a measure 
of the error (or bias) between the experiments and simulations, and beta is a measure of how informative 
a simulation is – large values indicate a very uninformative simulation. The fidelity Ω  will reach a 
maximum value – equal to 1 – when the mean values of the two distributions coincide and the standard 
deviation of the simulations goes to zero (Figure 15c). Thus, the maximum value will be reached only 
when the uncertainty in the simulations is zero and the simulations coincide exactly with experimental 
points (mean values). Increasing the uncertainty in the simulations or having a large difference between 
experimental and simulated mean values, will lead to a fidelity value lower than one. This implies that 
Ω  is bounded to the interval [ ]1,0∈Ω . Figure 14 shows a three-dimensional plot of Ω , where iso-level 
for the fidelity can be attained for different combinations for 𝛼𝛼 and 𝛽𝛽. When using a measure such as the 
one defined in Eq. (30), a simulation with mean values close to the experimental ones and a narrow 
uncertainty band, can have a fidelity Ω  higher than that of a simulation with a broader uncertainty band 
and mean values coinciding exactly with the experimental ones (see Figure 15). Hence, simulations with 
large uncertainty bands or with mean values far from the experimental one will be penalised naturally in 
the calculation of Ω . This characteristic is quite relevant for any multivariate measure used in the 
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assessment of UQ methods. For instance, a simulation matching exactly the experimental points, but with 
a very large uncertainty band become meaningless in the context of nuclear reactor safety (there is no 
reliability in the results). This is the main difference between the assessment of conventional CFD 
simulations and UQCFD, which might not be completely clear to CFD practitioners entering the UQ 
field.  

The concept of fidelity presented in this report has undoubtedly some issues. For example, it is 
assumed that the probability density function of both the experimental and CFD results is a Gaussian 
distribution. Although outputs PDFs are most certainly not conforming exactly to normal distributions, 
their mapping onto a known distribution –such as the normal– seems unavoidable. If every user, for 
instance, had provided us with the exact output PDF, we could calculate the fidelity by directly using the 
convolution of the two distributions (plus a normalisation coefficient). However, how could we compare 
two submissions –based on the fidelity concept– if the outputs PDFs of the participants are not the same? 
Thus, it seems imperative to establish a standard procedure to compare the fidelity (or any other measure 
for that matter) for several submissions. Therefore, we chose to map the experimental and simulation 
PDFs onto normal distributions, which allows us to obtain the fidelity value from an analytical solution. 

Figure 14. fidelity as a function of α and β 

 
To standardise the procedure for calculating the fidelity, the uncertainty bands provided by the 

participants were associated to sims2±  in the Gaussian distribution representing the CFD results. When 
the CFD uncertainty bands are not symmetric respect to the mean value, half of the difference between 
the upper and lower bands are used to calculate the standard deviation of the simulations, that is: 

( )
2

2 LowerUpper
sim

−
=s                       (32) 
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Figure 15. Overlapping degree   between simulations (continuous red) and experiments 
(continuous black) 

  
(a)                         (b)                         (c)  

 
(a) The mean value of the simulations coincides with the experimental one and the CFD uncertainty band is 

slightly narrower than that of the experiment.  
(b) The mean value of the simulations is slightly different than the experimental one, but the CFD uncertainty is 

much less than the one observed in the experiments.  
(c) The CFD uncertainty is zero and the simulated variable coincides with the mean value from the experiment. 

The mean value simm  is the one provided by the participants. The fidelity Ω  is then calculated at each 
grid point along all profiles for concentration, velocity and turbulence kinetic energy (see Figure 4) for 
the location of the profiles). To evaluate the correctness of the shape of the profiles, we fit a piecewise 
third order spline to the experimental and simulated results (mean values), and calculated the profiles 
derivatives at each grid point from the fitting curve f. Thus, at each grid point we evaluate the correctness 
of the profiles’ shape based on the relative error between the derivatives calculated from CFD and 
experimental results: 

dy
df

dy
dfsim exp1−=Ε                 (33) 

11.1. Figure of merit 

To generate a ranking table, it is necessary to account for both the fidelity and the correctness of the 
profiles in a single measure. It was initially proposed to use a simple combination of the averaged Ω� and 
Ε� in the form of: 

𝑀𝑀 = 𝜃𝜃1 �1 −
1

𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∑ Ω𝑖𝑖
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖=1 � + 𝜃𝜃2 �

1
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∑ Ε𝑖𝑖
𝑁𝑁𝑑𝑑𝑑𝑑𝑡𝑡𝑎𝑎
𝑖𝑖=1 �  (34) 

where 𝜃𝜃1 and 𝜃𝜃2 are coefficients between 0 and 1. However, and due to the high nonlinearity of the 
fidelity, a different figure of merit (FoM) had to be defined. To define the FoM used in this benchmark, 
we elaborated ranking tables for each grid point based independently on Ω and Ε, where the rank for each 
participant varied from 1 (highest) to 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (lowest). The FoM based on individual rankings of 
𝑅𝑅Ω,𝑖𝑖 and 𝑅𝑅E,𝑖𝑖 is given by 

𝐹𝐹𝐹𝐹𝐹𝐹 = 1
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∑ 1
2
�𝑅𝑅Ω,𝑖𝑖 + 𝑅𝑅E,𝑖𝑖�

𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖=1                  (35) 

where the subscript i refers to i-th experimental point and Ndata to the total number of data points used 
in the analysis. Hence, the FoM represents an average of individual rankings. The final ranking tables for 
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velocity, turbulence kinetic energy and concentration, were generated based on the measure defined in 
Eq. (35).  

Since the transport of a scalar field (i.e. temperature and/or concentration) in turbulent mixing is the 
most important physical phenomenon from a safety point of view, an additional measure is established to 
evaluate the accuracy of the simulations in predicting the concentration field. From the five concentration 
profiles submitted by the participants, we extracted –in an automated manner– the thickness of the 
mixing layer and compared it with the experimental values. To extract the mixing layer thickness 𝛿𝛿(𝑥𝑥), 
we fitted an error function to the experimental and simulated data points, 

𝑐𝑐(𝑥𝑥) = 1
2
�1 + 𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑦𝑦−𝑦𝑦0

𝛿𝛿(𝑥𝑥)/2
��                      (36) 

Then, the measure used to generate the ranking tables was the average of the absolute difference 
between the mixing layer thickness obtained from the simulations and experimental data points. 
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12.  EXPERIMENTAL RESULTS 

In this benchmark, only mean velocity, turbulence kinetic energy and mean concentration were used to 
assess the uncertainty quantification (UQ) methodologies. Five profiles along the mixing section were 
provided.  

12.1. Mean velocity profile 

The mean velocity profiles for all experiments (including the blind case) are presented in Figure 16. It is 
seen that a small density difference of 1% between the upper and lower streams, has a negligible effect 
on the mean velocity profiles. Only near the tip of the splitter plate (x = 50mm), a mild difference is 
observed within the mixing layer, which is consistent with the higher kinetic energy measured within the 
mixing layer. 

Figure 16. Mean velocity profiles at five selected location along the mixing section 
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12.2. Turbulence kinetic energy 

Profiles for the turbulence kinetic energy are shown in Figure 17 for five different locations along the 
mixing section. As seen in the figures, the turbulence kinetic energy is always higher – within the mixing 
layer – for the cases with a mild density difference. As discussed in the section for experimental 
uncertainties, we believe that the higher values for this variable obey an experimental bias. However, if 
higher values of the turbulence kinetic energy are indeed an artefact arising from an inhomogeneous 
refraction index, we would expect the bias to be the same for both experiments with density difference 
(experiments 318 and 320). The concentration profiles show that the thickness of the mixing layer is 
almost identical for the four experiments and, thus, the bending experienced by a beam of light crossing 
the inhomogeneous mixing layer would be the same or at least similar. Nonetheless, the turbulence 
kinetic energy is much larger for the experiment 318, which is consistent with a higher Reynolds number. 
Outside the mixing layer, the measurements agree well for experiments with the same Reynolds number.  

Figure 17. Turbulence kinetic energy at five different locations along the mixing section 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is also interesting to see that when the axis of the turbulence kinetic energy is in logarithmic scale, 
the profiles between experiments 318 and 320 are parallel, just like for the two experiments without 
density difference. Again, this behaviour does not appear to be possible if the bias for all the experiments 
with a density difference is the same. Another point that is worth mentioning is that in particle image 
velocimetry (PIV) measurements, the time delay between the two laser pulses (to obtain the pair of 
images used in the calculation of the instantaneous velocity field), is of the order of microsecond and, 
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therefore, a beam of light would cross a concentration field that is virtually frozen. Although an 
inhomogeneous refraction index introduces a small bending of the beam light, the bending would be 
almost identical for the two consecutives images. This also contributes to the unknowns in the 
uncertainties in the PIV measurements of the turbulence kinetic energy. One way to test the influence of 
the light bending (or the inhomogeneity of the refraction index), would be to run the same experiment 
with different time delay between the pair of images. By increasing the time delay, we would expect an 
increase in the turbulence kinetic energy if the bending of the light beam is truly causing a relevant 
experimental bias. Another more convincing alternative, would be to run a mixing experiment with two 
fluids with the same density and viscosity, but with a different refraction index. Unfortunately, and to the 
best of our knowledge, there are no fluids that comply strictly to these constrains. 
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12.3. Mean concentration profiles 

The mean concentration profiles obtained by laser-induced fluorescence (LIF) (Figure 18) also show a 
remarkable result. Profiles are almost identical (within the experimental uncertainties) for all the 
experiments, irrespective of the Reynolds number. Initially this appeared to be quite suspicious, but after 
a deeper analysis of the results, they make perfect sense. Despite the fact that mixing is stronger for the 
experiments with higher velocity fluctuations, the mean velocity is higher and the residence time inside 
the mixing section is lower. This means that as the mixing layer spreads faster for higher Reynolds 
numbers, it also gets advected faster which compensates for the stronger mixing. Thus, the mean 
concentration profiles display a self-similar behavior in terms of the Reynolds number. It is precisely this 
self-similarity what make us strongly believe that the higher value for the turbulence kinetic energy for 
the case with a mild density difference, is the result of an experimental bias. If the turbulence kinetic 
energy is truly higher for experiment 318, then the mean concentration profiles should look different for 
experiments 318 and 337. Nonetheless, this is just a conjecture that cannot be proved with the available 
data. 

Figure 18. Concentration profiles. 
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13.  UQCFD RESULTS AND FINAL RANKING TABLE  

The results provided by the participants are very encouraging, because, this being the first benchmark 
exercise on uncertainty quantification in computational fluid dynamic (UQCFD) worldwide, we expected 
a broader scatter of the results, which was not the case. Although the problem of turbulence mixing in a 
square channel may have appeared to be a simple one at first glance, the reality is quite different. For 
instance, the simple geometry of the mixing GEMIX facility led two of the participants to use 2D 
simulations, despite that the velocity profile inside the mixing section is fully three-dimensional. When 
using the experimental inlet velocity profile provided in this benchmark for two-dimensional simulations, 
the mass flow rate cannot be captured properly due to the three-dimensionality of the inlet velocity 
profile. In addition, the development of the velocity field along the mixing section is affected by all the 
walls, not only the upper and lower walls as in a two-dimensional case. Despite the difficulties related to 
turbulent mixing, some of the participants obtained astonishing good results. Users 01, 03 and 19 stand 
out from the rest of the submissions. For example, user-19 bounded the experimental velocity profiles 
perfectly with the UQCFD uncertainty bands, without using an extrapolation step as done by users-01 
and -03. Table 7 presents the final raking table for the present benchmark exercise. In red bold symbols, 
are the submissions that obtained a place in the top 3. As mentioned earlier, the results for the turbulence 
kinetic energy must be considered with precaution, due to the unknown experimental uncertainties in this 
variable.  

Table 7. Final ranking table 

user Rank. U Rank. TKE* Rank. C Rank. δ UQ (# sim) Tub. model 
1 3 2 1 2 PERCEIVE (6) EBRSM and k-w 
2 5 6 5 7 Kriging (26) k-w SST 
3 2 1 4 1 WAVE (836) Standard k-Ɛ 
4 10 7 12 13 PCE (220) Standard k-Ɛ 
7 11 4 9 6 PCE (103) Standard k-Ɛ 
9 4 5 3 5 ASME V&V 20-2009 (24) Low Re Abid k-Ɛ 
10 7 12 6 4 Monte Carlo (144) Standard k-Ɛ 
11 9 13 10 11 Deterministic Sampling (4) Zonal LES Model 
15 6 8 8 8 PCE (16) k-w SST 
16 12 3 7 10 Deterministic Sampling (8) Standard k-Ɛ 
18 13 11 13 12 PCE (22) LES (Smagorinsky) 

19 1 9 2 3 
Root Sum Square Ind. 

Uncert. + GCI (15) Ellip. Blending k-Ɛ 
20 8 10 11 9 Monte Carlo (40) k-w 
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As seen in previous benchmarks (e.g. PANDA benchmark), large eddy simulation (LES) did not 
provide an advantage against conventional Reynolds Averaged Navier Stokes (RANS) models (i.e. users-
11 and -18). We are all aware of the capabilities of LES for simulating turbulent flows, but as with any 
other simulation technique, we must also be aware of its limitations. For instance, when the aspect ratio 
of the numerical cell is too large (elongated cells in the axial direction), we might be resolving properly 
the turbulent scales in the spanwise direction, but not in the stream-wise direction. LES considers subgrid 
scales models that assume isotropy, but elongated cells introduce a fair amount of anisotropy in the 
Reynolds stresses, due to the disparity of wavelengths that are being resolved in each direction. Detached 
eddy simulations (DES or Zonal LES), attempt to mitigate this issue near walls –where cells usually 
possess a large aspect ratio– by switching to a RANS model. However, if the aspect ratio is still high in 
the core region, the eddy viscosity will be artificially higher than the one predicted with a uniform mesh 
with a grid spacing corresponding to the smallest size of an elongated cell. Calculating the filter size by 
using the cubic root of the cell volume, works for aspect ratios close to 1. For aspect ratios higher than 2, 
the use of LES models may require some compensating terms in the subgrid scale models. For high 
aspect ratios, LES equations lose their accuracy in representing properly a turbulent flow. The main idea 
in LES is very basic: we must resolve most the energetic scales, while the rest (including the dissipative 
ones) are approximated by the subgrid scale models. Celik et. al. [6] proposed that for reliable LES 
results, we must resolve 80% of the kinetic energy of the flow. To evaluate if a simulation fulfils this 
requirement, we can compare directly the ratio between the kinetic energy from the subgrid scale model 
and the total kinetic energy (kinetic energy predicted by LES + kinetic energy from the subgrid scale 
model). This criterion, which seems very appropriate, is seldom applied. Although DES provides a good 
alternative for the demanding requirements for the cell size near the wall, DES does not always solve the 
problem in this region, as seen in the velocity profiles of user-11. If we look closely to these results, we 
can see that the shape of the mean velocity profile near the wall is not correct, which indicates poorly 
resolved wall stresses.  

Another important issue observed in the present benchmark, is the use of two-dimensional simulations 
to reproduce a fully three-dimensional problem. For example, we believe that the use of two-dimensional 
simulations had an important impact on the results of user-04, where velocity and concentration profiles 
were not well reproduced. However, and despite of using two-dimensional simulations, user-09 obtained 
good scores in all the variables. These two users employed the 𝑘𝑘 − 𝜀𝜀 model, but user-09 used a variant 
for low Reynolds number. This choice seems strange to us, because the problem under study is fully 
turbulent (Re = 50 000 in the mixing section) and low Reynolds number models are reserved mostly for 
transitional regimes. Since these models are less diffusive, the velocity profile calculated by user-09 is 
less flattened than the one obtained by user-04 at x = 450 mm. This is confirmed by the lower values of 
turbulence kinetic energy from user-09. It might be possible that the physical errors derived from using a 
low Reynolds number model for a fully turbulent flow, are somehow absorbed by the UQ analysis when 
the uncertainties associated to the turbulence model are properly treated.   

The measures used to assess the capability of the UQCFD analyses in reproducing the concentration 
file show interesting results. The measure for the mixing layer thickness is linear (Eq. 37) and only 
considers the mean concentration profiles (without the uncertainty band). The second measure contains 
the UQ results through the non-linear concept of fidelity plus the correctness of the mean concentration 
profile. We see that there is a slight change in the ranking between 0 and 3. One of the critical cases is 
user-03, who ranked 4th for the concentration profile, but 1st for the mixing layer thickness. To us, the 
ranking evaluating the concentration profile is more significant than the one assessing the mixing layer 
thickness. The main reason for this is that when assessing the thickness of the mixing layer, the 
uncertainty bands are not accounted for. User-04 provides one of the most accurate results for the mean 
experimental values; however, the uncertainty bands are rather large making the results less reliable. This 
is an interesting property of the measure proposed in this benchmark, because it shows clearly that 
reproducing mean profiles is not enough to have a high score.  



NEA/CSNI/R(2017)19 │ 47 
 

  
      

The number of CFD simulations required by each participant to obtain the uncertainty bands varied 
broadly from 4 to 836. However, and as seen in the final ranking table, an elevated number of CFD runs 
does not guarantee a high score. For instance, users-01 and -19 required 6 and 15 simulations 
respectively, to achieve excellent scores for all the measures. The combination of propagation and 
extrapolation (e.g. users-01, -03) did no present a clear advantage against a purely propagating method 
(user-19). Nonetheless, these three users used the open test cases in one way or another to improve their 
results. For instance, user-19 calibrated their CFD model (mesh, turbulence model, etc.) with the open 
tests. Users-01 and -03 used the open tests to calculate the bias in the CFD results, which was then 
extrapolated to the blind test case. This extrapolation meant basically correcting the raw numerical 
results by the extrapolated bias obtained with the open tests. The extrapolation step is the main reason 
why these two users could get a close agreement for the turbulence kinetic energy within the mixing 
layer, and predicted the decrease of the concentration profile from the mixing layer towardss the wall. 
Unfortunately, the test matrix in the present benchmark exercise was essentially linear with respect to the 
Froude and Reynolds numbers, which makes an extrapolation step the perfect choice for calculating the 
bias in the CFD models. This means that for a system with almost a linear response to the relevant 
parameters (e.g. Froude and Reynolds number), whatever error is made in the CFD calculations, can be 
corrected (almost to perfection) with the extrapolation step. This will not be the case, for instance, when 
the bias in the numerical simulations is obtained from integral effect tests (IETs) and then extrapolated to 
a real reactor scenario.  

It is worth mentioning the low number of simulations required by the Deterministic Sampling method. 
Even though the two users employing this method (11 and 16) obtained relatively low scores, only a few 
simulations were needed to obtain the uncertainty bands. This is highly desirable in a method that could 
potentially be applied to a real reactor calculation. The main strength of Deterministic Sampling is the 
direct propagation of the moments from input parameters to the final solution. Thus, the number of 
simulations will increase with the number of input parameters and for the propagation of higher order 
moments. This simple observation opens the door to a difficult question. How to assess the quality of the 
UQ method when so many variables can play a key role in the final UQCFD solution? We have the user 
effect, mesh, turbulence model and UQ methodology that affect greatly the results. For example, Monte 
Carlo is the prime method when it comes to propagation of uncertainties. However, we see that users 
working with Monte Carlo did not obtain the highest scores. The low number of samples from user-20 
might have an impact on the accuracy of the uncertainty propagation, but even with 40 samples, a 
reasonable estimation of the standard of the output should be made. From the scores of user-10, it may 
seem that increasing the number of samples in the Monte Carlo (MC) propagation, increases also the 
quality of the results. But these two users also used different turbulence models, mesh and software, 
which makes the assessment of the UQ methodology difficult. Polynomial Chaos Expansions (PCE) is 
another propagation method that did not perform well in the present benchmark (users-04, -07, -15, -18). 
Nevertheless, PCE as well as MC are methods supported by very well-known mathematical theories and 
used successfully in countless cases.  

For the reasons here exposed, we believe that from the current results, it is almost impossible to decide 
which UQ methodology is the best. This is the main reason for proposing –at the beginning of the 
benchmark– to fix the mesh, turbulence model and numerics (e.g. advection scheme, convergence 
criteria, etc.) to focus only on the UQ methodology. Thus, the scores obtained in the present benchmark 
cannot be used reliably in assessing the quality and capabilities of the UQ methods. We believe that for 
future benchmarks on this area (if any), these considerations must be discussed carefully when deciding 
the aim of the benchmark. In uncertainty quantification, one of the most difficult parts is the 
determination of the input parameters and their associated uncertainties. A robust UQ methodology must 
include a clear and structured procedure (e.g. Phenomena identification and ranking table – PIRT) to 
determine all the input uncertainties and decide which are the dominant parameters that should be 
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considered in the propagation step. Fixing the conditions for the CFD models (mesh, turbulence model, 
etc.), would have helped us in assessing the robustness, efficiency and accuracy of the UQ methodology. 

Finally, we must note that the uncertainty bands obtained in the present benchmark (+/- 2 std), do not 
conform to the standards in the context of nuclear reactor safety, where uncertainty bands are constructed 
from tolerance intervals. When the output probability density function of the UQCFD analysis is 
different than a normal distribution, the interval constructed from +/- 2 std does not correspond to the 
tolerance interval (5%, 95%) usually used in the calculation of uncertainties in nuclear reactor safety. 
Enforcing the generation of uncertainty bands from a tolerance interval, introduces additional difficulties 
in UQCFD. For instance, when using Polynomial Chaos, the standard deviation from inputs can be 
propagated easily to the output. However, when the uncertainty bands must correspond to a tolerance 
interval, additional simulations are required to calculate higher order moments (needed for the 
calculation of the tolerance interval), or Monte Carlo simulations must be used in the response surface to 
obtain the appropriate output probability density function.  
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Figure 19. Concentration at x = 50mm 
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Figure 20. Concentration at x = 150mm
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Figure 21. Concentration at x = 250mm 
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Figure 22. Concentration at x = 350mm 
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Figure 23. Concentration at 450 
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Figure 24. Mean velocity profiles at x = 50mm 
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Figure 25. Mean velocities at x = 150mm 
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Figure 26. Mean velocity at x = 250mm 
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Figure 27. Mean velocity at x = 350mm 
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Figure 28. Mean velocity profile at x = 450 
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Figure 29. Turbulence kinetic energy at x = 50 
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Figure 30. Kinetic energy at x = 150mm 
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Figure 31. Kinetic energy at x = 250mm 
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Figure 32. Kinetic energy at x = 350mm 
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Figure 33. Mixing layer thickness 

 

The results were separated in three groups (images): On the left image, we put the top three 
submissions; on the right image, we included the submissions that predicted the growth rate of thickness 
of the mixing layer, reasonably well. On the bottom figure are the submissions with the lowest scores. 
We have included the ranking of each participant in parenthesis. 
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14.  CONCLUDING REMARKS AND COMMENTS 

As the first benchmark exercise of its kind worldwide, participants and the organising team were faced 
with several problems along the way, not only from the experimental point of view but also on 
assessment of the uncertainty quantification in computational fluid dynamic (UQCFD) data, making it a 
very challenging benchmark. In the GEMIX facility, the measurement of the inlet boundary condition 
was not considered in the design of the experiment and, therefore, a substantial additional effort was 
made at PSI to provide all the required data. Despite the geometrical simplicity of the mixing section in 
the GEMIX facility, it was determined that even using advanced experimental techniques such as particle 
image velocimetry (PIV), laser Doppler anemometry (LDA), laser-induced fluorescence (LIF) and wire 
mesh sensor (WMS), it was still challenging to obtain UQCFD grade data, with the appropriate 
estimation of the experimental uncertainties. While the difficulties in determining experimental 
uncertainties were evident, without a comprehensive evaluation of them, the comparison between 
simulations and experiments becomes less reliable. For a conventional assessment of CFD simulations, 
uncertainty bands are not considered (only mean values), but in the present benchmark, the fidelity 
parameter depended strongly on the experimental and numerical uncertainties and, thus, unreliable 
experimental uncertainties lead to an unreliable fidelity and ranking scores.  

Despite the difficult problems encountered during this benchmark, the overall results are truly 
encouraging. For many users, this was perhaps the first encounter with uncertainty quantification. 
However, the spread in the results was less than expected. For instance, the mean velocity profiles 
provided by the participants are within a narrow band (+/- 7%) from the experimental values. The 
concentration profiles were also reasonably well predicted by most of the participants, which is also the 
case for the thickness of the mixing layer. Another quite positive aspect of this benchmark was the 
proposal of a multivariate measure, namely the fidelity, that seems to be a good candidate for this type of 
analysis. Although there are still issues with, such as the assumption that the output probabilities of the 
simulations and experiments are Gaussian, its analytical form makes the evaluation of this measure very 
simple. Since the fidelity is basically a rescaled convolution between two probability density functions, 
the same concept could be used for any other distributions if they are known. However, the experimental 
uncertainties are seldom (or never) provided in the form of a probability distribution and, thus, a fidelity 
measure based on other distributions seems unnecessary.  

After a careful analysis of the results and methods employed by the participants, it was concluded that 
a general UQCFD methodology for nuclear reactor safety should contain (whenever possible) four steps: 
uncertainty identification, calibration, extrapolation, and propagation (UNICEP). These four fundamental 
steps appear to contain all the ingredients for a robust UQCFD methodology. Even though CFD 
simulations can be very accurate when the main characteristics of the flow are well resolved by the mesh, 
for nuclear applications, that level of accuracy can seldom be achieved, and thus it is important to do the 
best with the computational resources at one’s disposal. This is where the calibration and extrapolation 
steps play a fundamental role. Even if mesh cannot resolve the flow structure, the models (boundary 
conditions, mesh, turbulence model coefficients, etc.) can be calibrated on open tests to improve the CFD 
results and then perform the simulations at the reactor scale with extrapolated errors. However, this is 
still a challenging task, which requires high quality experimental data.  
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The mathematical bases of all the propagation methods used in this benchmark have several things in 
common and, thus, the propagation method itself seems to have a minor effect on the final quantification 
of uncertainties. For instance, if the same mathematical model with the same uncertainty sources is 
considered when using Monte Carlo or Polynomial Chaos to propagate the uncertainties, the output 
probability density function will be the same if the number of sampling point is large and the polynomial 
degree is high enough. It might be that Polynomial Chaos converges faster for a small number of input 
parameters, but for a large number of random inputs, Monte Carlo might take the lead on efficiency. 
Assuming that all propagation methods yield similar output probability density functions, the selection of 
the method should be based on what is needed from the output (level of accuracy, tolerance interval, etc.) 
and the computational resources at one’s disposal. If the only interest is on propagating the second 
moment (variance) of an input probability density function, then deterministic sampling might be the best 
option. If the output probability distribution function (PDF) is important, the response surface from 
polynomial chaos as a meta-model and Monte Carlo could be used to obtain the output probability 
response. In addition, polynomial chaos allows one to perform a sensitivity analysis on the response 
surface and obtain the Sobol indices at no extra cost. If the uncertainties are not random, but categorical 
variables, then the propagation method must be selected accordingly and based on our interpretation of 
those categorical variables.  

The main conclusions of this benchmark are summarised in the following. 

14.1. Background 

The main objectives of the current activity are the promotion, test and evaluation of various 
methodologies for UQCFD for nuclear reactor safety (NRS) applications. The assessment of the UQ 
methodologies was based on a blind test case from GEMIX with a density gradient, which is of practical 
interest to NRS. The product is a synthesis report presenting a detailed assessment of numerical 
predictions – including the uncertainty bands – with measured data. This report was presented at the 
CFD4NRS-6 Workshop held in Boston in 2016. 

The numerical benchmark exercise is restricted to single-phase flow, with turbulent mixing in the 
presence of density gradients, which is a typical situation encountered in many reactor issues, where 
CFD is currently used. The exercise was based on the GEMIX experiment, which was carried out at the 
Paul Scherrer Institute in Switzerland. Participants submitted a calculation for the blind test case, where 
they presented their predictions for mean velocity, turbulence kinetic energy and concentration profiles. 
All the results included uncertainty bands. Since some methodologies for UQCFD use data from a 
validation step (for the definition of the model, its calibration and/or extrapolation of errors), three open 
tests cases were provided to the participants. It is noteworthy to mention that for the blind test, the 
density ratio between the two mixing streams was 1%, which is much lower than the values encountered, 
for example, in pressured thermal shocks. 

In recent years, the use of CFD to address issues related to NRS has become very popular due to its 
higher (temporal and spatial) resolution compared to system codes. Reactor components where inherent 
three-dimensional phenomena taking place are particularly suited for these computational tools. For 
instance, the junction of the cold leg (CL) with the reactor pressure vessel (RPV) may be subjected to 
thermal stresses in pressurised thermal shock (PTS) scenarios. Accurately predicting three-dimensional 
(3D) flows with a sufficiently fine resolution cannot be handled by lump parameter codes nor by system 
codes, which makes CFD the only option. 

Despite the enormous advances in conventional CFD (which involves single-phase turbulent flows) 
there are still questions about the level of accuracy of these simulations, which acquire a special 
relevance for licensing purposes. Although in CFD simulations, the number of parameters is much lower 
than that of system codes, the uncertainties associated with the mesh resolution, turbulence models, 
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boundary conditions and numerical schemes still renders the use of these advanced tools, to mere 
“demonstrations” in the context of NRS. 

There are several methodologies available nowadays for UQCFD, and most of them involve sampling 
the parameter space. Compared to system code, each CFD realisation might be orders of magnitude more 
expensive, and thus efficient methods, which can obtain a good estimation of the uncertainties with few 
samples, are needed. Therefore, the GEMIX benchmark exercise presents a unique opportunity to 
investigate the advantages and disadvantages of each method, which can provide valuable information 
when selecting a UQCFD for NRS applications. 

Methods to assess model uncertainties can be divided into two classes: propagation methods and 
extrapolation methods. Propagation of uncertainty methods requires several steps: 

• identification of all uncertain input parameters; 

• determination of the uncertainty of all uncertain input parameters; 

• calculating a number of runs with each uncertain parameter being sampled according to the 
established PDF; 

• from the runs, determination of the PDF of the figure(s) of merit (FoM) or of any code 
response. 

Various propagation methods may differ by the use of random sampling or deterministic sampling, and 
by a possible use of meta-models (e.g. polynomial chaos expansion). 

Extrapolation methods measure the accuracy of predictions on some experiments (here on open 
GEMIX tests) and extrapolate the accuracy to the blind problem.  

There are also methods combining extrapolation for some sources of uncertainty (e.g. uncertainty due 
to physical model) with propagation of uncertainty for other sources of uncertainty (e.g. initial and 
boundary conditions). Extrapolation methods may also use some meta-models. 

Extrapolation methods may need a lower number of runs than propagation methods. Propagation 
methods may reduce the number of runs by using deterministic sampling rather than random sampling. 
The use of meta-models may reduce the number of runs if the number of uncertain parameters is not too 
high. 

14.2. Deliverables, expected results and users 

• Mean velocity, turbulence kinetic energy, and concentration profiles were predicted and 
compared to experimental values (GEMIX).  

• A synthesis was presented at the CFD4NRS-6 Workshop held in September 2016 and a detailed 
synthesis report on comparisons between numerical and measured data was produced. 

• Users are all actors in safety analysis and in nuclear fuel design. 

The exercise complements ongoing national programmes for the study of nuclear safety, and European 
initiatives, such as NURESAFE (7th EU - FP). 

14.3. Safety significance of the current results 

The absence of UQCFD application to nuclear safety is a major limitation in the use of mature single-
phase CFD tools in safety demonstrations for licensing. 
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Most single-phase issues – for which it was recognised that CFD may bring benefits – are mixing 
problems with or without density effects (buoyancy/stratification). The proposed activity addresses UQ 
for mixing problems in the presence of such effects, though with a limited density ratio and some 
incomplete experimental uncertainties. 

14.4. Main conclusions 

• Actors should be aware of the limitations of PIV when working with slightly inhomogeneous 
fluids. In this benchmark, we could not prove if the high values for the turbulence kinetic energy 
in the mixing layer, for a slightly inhomogeneous medium, is physical or not, but there is a 
suspicion of a measuring artefact. The turbulence kinetic energy was therefore not considered in 
the evaluation and ranking of code predictions and of uncertainty quantifications. 

• A new measure (fidelity) has been proposed to assess UQCFD results. It is given by the 
convolution of the probability distributions of a predicted value and the corresponding 
experimental value, both assumed to be Gaussian. 

• The scatter in the results is less than expected given the complexity of the problem. For example, 
velocity profiles from all participants fall within a narrow band (±7%), close to experimental 
values. 

• Although the shape of concentration profiles was in general well predicted, a larger scatter was 
observed for the thickness of the mixing layer, indicating some problems when selecting the 
turbulent Schmidt number. Since the spreading of the mixing layer is primarily controlled by the 
turbulent Schmidt number, it seems logical to include this parameter as a source of uncertainty in 
future UQCFD analyses. 

• Very good results could be obtained with both uncertainty propagation method and combined 
accuracy extrapolation and uncertainty propagation methods. The top 3 users needed 6, 15 and 
836 simulations of the blind test showing that some methods may be used successfully with a 
low number of calculations at least in this rather simple case. Extrapolation methods may need a 
lower number of runs than propagation methods and propagation methods may reduce the 
number of runs by using meta-models, provided that the number of uncertain parameters is not 
too high. Such low numbers of runs may thus not be generalisable to other more complex 
problems, with more challenging geometries and boundary conditions. In addition, many 
preliminary calculations of open tests may have been necessary when using extrapolation 
methods, before the application to the blind test. 

• The participants using a combined method (propagation and extrapolation) obtained the best 
agreement with the blind data. However, this should be analysed with care, because if the 
experimental results – on which the extrapolated errors are based – have a large bias, the 
numerical results will reflect that, as seen with the (most likely) unphysical value for the 
turbulence kinetic energy. 

• Some methods give a very narrow band of uncertainties, while some others give a rather wide 
band of uncertainties. It may be linked to the input uncertainties taken into account, but possibly 
also to the characteristics of the methods themselves. The applicability of these methods, in the 
field of nuclear safety assessment, still raises questions to be further discussed and requires at 
least further testing and benchmarking. 

• The most important step in the UQCFD analysis is the proper characterisation of the input 
uncertainties. When analysing the scattering in the rankings from users employing the same 
turbulence model (e.g. k-Ɛ), it is clear that the turbulence model alone cannot be responsible for 
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such variability in the results. As explained in the text, if we focus only on propagating a PDF 
through a mathematical model, the output PDF should be independent of the propagation 
method. The propagation method and turbulence model therefore must have a marginal influence 
in the present exercise. Since the users’ results were not used to perform a sensitivity analysis to 
determine the most influential variables, the last statement should be taken with precaution, as 
there is no definitive scientific proof to support it. 

• In the present exercise, the results of some participants give confidence in the applicability of 
UQCFD, for more realistic scenarios relevant for NRS. 

• As a result of small density effects in the benchmark and small differences between open and 
blind tests, the extrapolation from open tests made the benchmark somewhat easier. Future 
benchmarks should investigate situations with stronger density effects and with more different 
conditions between open and blind tests. 
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APPENDIX A: FILTERED NAVIER-STOKES EQUATIONS 

When filtering the Navier-Stokes equations, we can make use of the Reynolds decomposition, but the 
precaution that successive filtering operations, denoted by 〈⋅〉, lead to time dependent smoother fields. 
Expressing the velocity in terms of the first filtered field 𝐮𝐮� and its fluctuating part 𝐮𝐮′, we can express the 
mass conservation equation as: 

〈∇ ∙ [𝐮𝐮� + 𝐮𝐮′]〉 = 0                                                     (𝐴𝐴. 1)    
or 

∇ ∙ 𝐮𝐮� + ∇ ∙ 〈𝐮𝐮′〉 = 0                                                   (A. 2)    
where 𝐮𝐮� ≡ 〈𝐮𝐮�〉. If we define a second fluctuating field in terms of a second filtering operation, we have 
𝐮𝐮� = 𝐮𝐮� + 𝐮𝐮′′. Thus, mass conservation expressed in terms of the first filtered field is written as: 

∇ ∙ 𝐮𝐮� = −∇ ∙ 〈𝐮𝐮′ − 𝐮𝐮′′〉                                                  (𝐴𝐴. 3) 
Similarly, we can rewrite the momentum equation in terms of the first filtered velocity field as: 

𝜕𝜕𝐮𝐮�
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝐮𝐮�𝐮𝐮�) + ∇ ∙ 〈𝐮𝐮′𝐮𝐮′〉 = −
1
ρ
∇P� + ∇ ∙ (ν∇𝐮𝐮� + 𝜈𝜈∇𝐮𝐮�𝑇𝑇) +

1
ρ
𝐟𝐟̅ − 𝒇𝒇𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄      (𝐴𝐴. 3) 

with the correcting force defined by: 

𝒇𝒇𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =
𝜕𝜕〈𝐮𝐮′ − 𝐮𝐮′′〉

𝜕𝜕𝜕𝜕
+ 2∇ ∙ 〈𝐮𝐮�𝐮𝐮′〉 + ∇ ∙ (〈𝐮𝐮�𝐮𝐮�〉 − 𝐮𝐮�𝐮𝐮�)                   (𝐴𝐴. 4) 

When the filtering operation corresponds to the time average, then the correcting force and the time 
derivatives are null. Most CFD researchers neglect the contribution from the correcting force and focus 
only on the Reynolds stresses. This is the first source of uncertainty in subgrid (space/time) scale models. 
The second, and arguably the most important source of uncertainty, arises from the approximation of the 
Reynolds stresses.  
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APPENDIX B: SHORT DESCRIPTION OF THE UQ METHOD  
(non-edited documents prepared by each participant)  

User-02 

1. Selection of the uncertainty sources and method for mapping the experimental 
inlet boundary conditions 

In order to deal with some uncertainties on flow conditions at the inlet sections, the velocity profile was 
varied between a uniform and a fully developed profile according to the relationship: 

𝑢𝑢(𝑦𝑦, 𝑧𝑧,𝛼𝛼) = � 𝛼𝛼
𝑢𝑢𝑑𝑑(𝑦𝑦,𝑧𝑧)

+ 1−𝛼𝛼
𝑢𝑢𝑢𝑢
�
−1

(1) 

where 𝑢𝑢𝑑𝑑(𝑦𝑦, 𝑧𝑧) corresponds to the fully developed profile and 𝑢𝑢𝑢𝑢 denotes the uniform profile.  

The fully developed profile is obtained from a precursor calculation in a small portion of the upper leg 
using the same mesh and periodic boundary conditions in the stream-wise direction, a mean pressure 
gradient is added that corresponds to the prescribed mass flow rate. In this way, the velocity profile 
𝑢𝑢(𝑦𝑦, 𝑧𝑧,𝛼𝛼) leads also the same prescribed mass flow rate. Then, another precursor calculation is 
performed, again in a small portion of the upper leg and using the same mesh but by imposing the 
computed profile 𝑢𝑢(𝑦𝑦, 𝑧𝑧,𝛼𝛼) at the inlet and by specifying the turbulent kinetic energy 𝑘𝑘 as: 

𝑘𝑘 = 3
2

 (𝑖𝑖 𝑢𝑢(𝑦𝑦, 𝑧𝑧,𝛼𝛼))2 (2) 

where 𝑖𝑖 denotes the turbulent intensity.  

The final profiles for both the inlet velocity and the turbulent quantities (namely here for the 𝑘𝑘-𝜔𝜔 SST 
model, the inlet turbulent kinetic energy 𝑘𝑘 and the specific dissipation 𝜔𝜔) are then derived from this 
second precursor calculation at a stream-wise distance 𝑥𝑥𝑐𝑐 from the inlet plane. Several precursor 
calculations have been performed to select a value for (𝑖𝑖, 𝑥𝑥𝑐𝑐) at 𝛼𝛼 = 0.5 that best fit the experimental 
profiles for the velocity and the turbulent kinetic energy. In practice, the velocity profile appears almost 
identically along the streamwise direction whereas the best fit for the turbulent kinetic energy is found at 
𝑥𝑥𝑐𝑐 = 0.015 m, together with an inlet turbulent intensity 𝑖𝑖 = 0.042. Keeping (𝑖𝑖, 𝑥𝑥𝑐𝑐) = (0.042,0.015) and 
varying 𝛼𝛼, it should be pointed out that the numerical results at 𝑥𝑥𝑐𝑐 embrace the experimental profiles 
well. 

Then, the uncertainty source 𝛼𝛼 was varied in each leg, possibly with different values at the upper and 
the lower leg, between 0.1 and 0.9 keeping fixed (𝑖𝑖, 𝑥𝑥𝑐𝑐) = (0.042,0.015). In addition, the turbulent 
Schmidt number 𝑆𝑆𝑐𝑐 was also varied between 0.5 and 1.3. A uniform probability density distribution was 
assigned to the random variables 𝛼𝛼 and 𝑆𝑆𝑐𝑐. 

2. The c-ANOVA-POD-Kriging method for uncertainty quantification 

The c-APK method [1] relies on the merging of the c-ANOVA method for sensitivity analysis [2] and the 
POD/Kriging method for meta-modelling [3]. This approach aims to improve the domain exploration of 
Kriging-based methods known as the curse of dimensionality of the existing UQ strategies when dealing 
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with highly expensive simulations to extend them from low to medium dimension spaces. This is done 
by using the anchored-ANOVA decomposition to reduce the N-dimensional uncertain space to the sum 
of usually mono-dimensional and bi-dimensional UQ parameter spaces plus a residual term. The 
Kriging-based meta-modelling is applied to each sub-space and the full response surface can then be 
reconstructed just by summing all the sub-meta-models.  

2.1 The c-ANOVA decomposition 
We first recall the ANOVA decomposition equation: 

𝑋𝑋(𝜔𝜔) = 𝑋𝑋0 + ∑ 𝑋𝑋𝑗𝑗1�𝜔𝜔𝑗𝑗1� + ∑ 𝑋𝑋𝑗𝑗1,𝑗𝑗2�𝜔𝜔𝑗𝑗1 ,𝜔𝜔𝑗𝑗2� + ⋯+1≤𝑗𝑗1≤𝑗𝑗2≤𝑁𝑁1≤𝑗𝑗1≤𝑁𝑁 𝑋𝑋1,2,…,𝑁𝑁(𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑁𝑁) (3) 

where 𝑋𝑋(𝜔𝜔) is a generic output of the UQ method (when the quantity of interest is a field 𝑋𝑋(Ω,𝐷𝐷), the 
decomposition apply to each grid point in the domain of interest 𝐷𝐷), which is function of a set of N input 
parameters 𝜔𝜔 = (𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑁𝑁) and 𝑋𝑋0, 𝑋𝑋𝑗𝑗1�𝜔𝜔𝑗𝑗1�,… , 𝑋𝑋1,2,…,𝑁𝑁(𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑁𝑁) are the ANOVA 
decomposition terms, where 𝑋𝑋0 is a constant computed as follows: 

𝑋𝑋0 = ∫ 𝑋𝑋(𝜔𝜔) 𝑑𝑑𝑑𝑑(𝜔𝜔)Ω  (4) 

i.e. it is the ensemble average of the dependent variable 𝑋𝑋 against the Lebesgue measure 𝜇𝜇(𝜔𝜔) of the 
random space Ω = [0,1]𝑁𝑁. Considering the following properties of the ANOVA decomposition: 

∫𝑋𝑋𝑗𝑗1,…,𝑗𝑗𝑠𝑠  𝑑𝑑𝑑𝑑�𝜔𝜔𝑗𝑗𝑘𝑘� = 0  1 ≤ 𝑘𝑘 ≤ s (5) 

and 

∫ 𝑋𝑋𝑗𝑗1,…,𝑗𝑗𝑠𝑠  𝑋𝑋𝑘𝑘1,…,𝑘𝑘𝑚𝑚  𝑑𝑑𝑑𝑑(𝜔𝜔) = 0   ∀ (𝑗𝑗1, … , 𝑗𝑗𝑠𝑠) ≠ (𝑘𝑘1, … , 𝑘𝑘𝑚𝑚)Ω  (6) 

the higher order terms can be obtained through the following recurrence formula: 

𝑋𝑋𝑗𝑗1,𝑗𝑗2,…,𝑗𝑗𝑠𝑠�𝜔𝜔𝑗𝑗1 ,𝜔𝜔𝑗𝑗2 , … ,𝜔𝜔𝑗𝑗𝑠𝑠� = ∫…∫𝑋𝑋(𝜔𝜔)𝑑𝑑𝑑𝑑�𝜔𝜔𝑗𝑗𝑠𝑠+1�…𝑑𝑑𝑑𝑑�𝜔𝜔𝑗𝑗𝑁𝑁� − ∑ 𝑋𝑋𝑗𝑗𝑚𝑚,…,𝑗𝑗𝑛𝑛�𝜔𝜔𝑗𝑗𝑚𝑚 , … ,𝜔𝜔𝑗𝑗𝑛𝑛�𝑗𝑗𝑚𝑚,…,𝑗𝑗𝑛𝑛  (7) 

with: 

𝑗𝑗𝑚𝑚, … , 𝑗𝑗𝑛𝑛 ⊂ 𝑗𝑗1, … , 𝑗𝑗𝑠𝑠 (8) 

The dimensionality of each term is denoted 𝜈𝜈 so that 𝜈𝜈 = 1 is related to the mono-dimensional terms, 
i.e. single effects components. We truncate the ANOVA decomposition to 𝜈𝜈 = 2, discarding from the 
beginning any higher order interaction between input parameters than simple effects and two-by-two 
couplings.   

At this step, a generic output variable 𝑋𝑋(𝜔𝜔) can be approximated as a fixed order 𝜈𝜈 = 2 ANOVA 
decomposition: 

𝑋𝑋(𝜔𝜔) = 𝑋𝑋0 + ∑ 𝑋𝑋𝑗𝑗1�𝜔𝜔𝑗𝑗1� + ∑ 𝑋𝑋𝑗𝑗1,𝑗𝑗2�𝜔𝜔𝑗𝑗1 ,𝜔𝜔𝑗𝑗2� + 𝜖𝜖𝑇𝑇1≤𝑗𝑗1≤𝑗𝑗2≤𝑁𝑁1≤𝑗𝑗1≤𝑁𝑁  (9) 

Where 𝜖𝜖𝑇𝑇 is the ANOVA truncation error. 

The computation of each ANOVA term requires the evaluation of a number of high-dimensional 
integrals. A possible solution is to switch to the anchored-ANOVA in order to compute the terms of the 
decomposition [2,4].The main concept of the anchored-ANOVA decomposition is to adopt a Dirac 
measure instead of the standard Lebesgue one, so that: 

𝑑𝑑𝑑𝑑(𝜔𝜔) = 𝛿𝛿(𝜔𝜔 − 𝑐𝑐)𝑑𝑑𝑑𝑑 (10) 
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Where 𝑑𝑑𝑑𝑑(𝜔𝜔) is the Lebesgue measure, 𝛿𝛿(𝑥𝑥)is the Dirac function and 𝑐𝑐 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑁𝑁) is the anchor 
point. Recalling that a good choice for the anchor point 𝑐𝑐 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑁𝑁) is the centroid (centre of 
gravity weighted with the input parameter distributions) of the uncertain space [5], one can write: 

𝑋𝑋0 = 𝑋𝑋(𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑁𝑁) (11) 

𝑋𝑋𝑗𝑗1�𝜔𝜔𝑗𝑗1� = 𝑋𝑋�𝑐𝑐1, 𝑐𝑐2, … ,𝜔𝜔𝑗𝑗1 , … , 𝑐𝑐𝑁𝑁� − 𝑋𝑋0 (12) 

𝑋𝑋𝑗𝑗1,𝑗𝑗2�𝜔𝜔𝑗𝑗1 ,𝜔𝜔𝑗𝑗2� = 𝑋𝑋�𝑐𝑐1, 𝑐𝑐2, … ,𝜔𝜔𝑗𝑗1 , … ,𝜔𝜔𝑗𝑗2 … , 𝑐𝑐𝑁𝑁� − 𝑋𝑋𝑗𝑗1�𝜔𝜔𝑗𝑗1� − 𝑋𝑋𝑗𝑗2�𝜔𝜔𝑗𝑗2� − 𝑋𝑋0 (13) 

Convergence in the dimensionality 𝜈𝜈 is assured by monitoring the c-ANOVA dimension truncation 
error, which can be seen as a 𝑋𝑋𝑇𝑇 = 𝑋𝑋1,2,…,𝑁𝑁(𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑁𝑁) term where all terms of order higher than 
𝜈𝜈 = 2 are merged. The method will be efficient if 𝜖𝜖𝑇𝑇 is low and this must be evaluated from the 
beginning and monitored all along the UQ analysis. 

2.2 The POD/Kriging sub-meta-models 
In order to build the full response surface, each term of the anchored-ANOVA decomposition is 
interpolated, which can be done applying Ordinary Kriging directly if 𝑋𝑋(𝜔𝜔) is a scalar or using a 
POD/Kriging-based approach, as illustrated in Bracconier et al. [3], in the more general case where 𝑋𝑋(𝜔𝜔) 
is a long vector containing all the investigated information for a single simulation. As in this benchmark 
we performed RANS simulations, the POD step is skipped.  

In the Ordinary Kriging, a covariance parameter of 𝜃𝜃 = 0.1 is used in the efficient polynomial cubic 
splines covariance function: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧1 − 6(𝑥𝑥𝑥𝑥)2 + 6(𝑥𝑥𝑥𝑥)3, 𝑥𝑥 < 1

2𝜃𝜃

2(1 − 𝑥𝑥𝑥𝑥)3, 1
2𝜃𝜃
≤ 𝑥𝑥 < 1

𝜃𝜃
 

0, 𝑥𝑥 ≥ 1
𝜃𝜃

 (14) 

An adaptive strategy to feed the sub-meta-model approximation is adopted in order to minimise the 
number of function calls by optimising their repartition. As for the POD/Kriging-based method in 
Bracconier et al. [3], the leave-one-out method is used to cross-validate the response surface. 

2.3 Main statistics estimators and sensitivity analysis from the c-APK 
surrogate model 

In the c-APK method the output statistics are calculated from the full response surface by quasi-Monte 
Carlo (quasi-MC) integration. Sobol sequences are used to generate the quasi Monte Carlo samples.  

The main statistics are obtained through quasi Monte Carlo (Sobol sequences) estimators [6]. The 
mean estimate 𝜇𝜇(𝑋𝑋) is calculated as: 

𝜇𝜇(𝑋𝑋) = 1
𝑞𝑞𝑀𝑀𝑀𝑀

∑ 𝑋𝑋𝑖𝑖
𝑞𝑞𝑀𝑀𝑀𝑀
𝑖𝑖=1  (15) 

where 𝑞𝑞𝑀𝑀𝑀𝑀  is the number of quasi Monte Carlo samples 𝑋𝑋𝑖𝑖 of the c-APK surrogate model of 𝑋𝑋(Ω). 

The variance 𝜎𝜎2(𝑋𝑋) is calculated as: 

𝜎𝜎2(𝑋𝑋)  = 1
𝑞𝑞𝑀𝑀𝑀𝑀

∑ (𝑋𝑋𝑖𝑖 − 𝜇𝜇(𝑋𝑋))2𝑞𝑞𝑀𝑀𝑀𝑀
𝑖𝑖=1  (16) 
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First order Sobol’ variance-based sensitivity indexes [7] are directly obtained from the c-ANOVA 
decomposition (note that Dirac Sobol’ variance-based indexes are not the same as the Lebesgue one as 
the covariance between c-ANOVA terms is not null [8]). NaN values in the provided files correspond to 
zero-variance values of the quantity of interest at grid points. 

It should be noticed that the additional files including the results of the sensitivity analysis have been 
written for each output variable, namely the concentration (files User02-SA-C_*.dat), the velocity (files 
User02-SA-U_*.dat) and the turbulent kinetic energy (files User02-SA-K_*.dat). 
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User-03 

1. Construction of uncertainty band 

1.1 EDF WAVE method 

The purpose of the WAVE method [1] is to produce, for a certain quantity of interest S (S being a 
scalar output of the CFD calculation performed at reactor scale), a value S5/95 that is smaller (or greater, 
depending on what is penalising) than 95% of the possible values of S, with a confidence level of 95%. 
The confidence level comes from the finite number of experimental test cases at one’s disposal. The 
method is based on a comparison between experimental results and calculation results at test case scale. 
It also considers a propagation of the uncertainty of input data parameters. 

S is the scalar quantity of interest (example: velocity, turbulent kinetic energy, etc.). In the following, 
we assume that S is made non-dimensional in an appropriate way, so that values at reactor scale and at 
test case scale can be compared directly. 

We define: 

• St is the “true” (unknown) value of S; 

• SCFD is the value of S calculated by the CFD model; 

• “r” represents the true (unknown) conditions at reactor scale; 

• “R” represents the best-estimate value of “r”. 

Thus, St(r) is the “true” (unknown) value of S at reactor scale; SCFD(R) is the result of the CFD 
calculation at reactor scale; SCFD(r) is the result a CFD calculation would give with the “true” reactor 
scale conditions (if these conditions were known). 

Similarly, “e” represents the “true” (unknown) conditions at test case scale; “E” represents our 
estimation of “e”. Since several experimental tests are used in the method, index “k” (k ϵ [1, K]) is used 
to differentiate these K tests. 

We also introduce the following notations: 

• mk is the “true” value of S in experimental test number k, i.e.: mk = St(ek); 

• Mk is the measured value of S in experimental test number k. When measuring mk, the answer 
we get is Mk, because instrumentation has a limited accuracy. 

The CFD result at reactor scale is considered unique. Nonetheless, different numerical parameters can 
vary between validation and reactor calculation (mesh, time step, numerical scheme …). These different 
numerical configurations induce variability in the CFD results. For practical reasons, we suggest to treat 
this variability at test case scale. A new notation is introduced using index “CFD” with the number “1” 
corresponding to test case scale simulation with numerical parameters set number “1”, number “2” 
corresponding to another set of numerical parameters. Finally, we write that the “true” value of S can be 
split as follows:Figure 1 
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Figure 1: global equation with different uncertainties 

 
Each term is described below: 

• SCFD2(R) is simply a numerical (non-random) value, the result of the CFD calculation at 
reactor scale for the scalar quantity S; 

• The correction term (SCFD2(r) – SCFD2(R)) is treated as random; the uncertainty of reactor 
scale conditions is propagated through the model; 

• The term (mk – Mk) represents the measurement uncertainty; 

• The term (Mk – SCFD1(Ek)) is just the (non-random) difference between measured and 
calculated value of scalar S for test number k; 

• The correction term (SCFD1(Ek) – SCFD1(ek)) is treated as random; 

• The term (SCFD1(ek) – SCFD2(ek)) is treated as a random variable and takes into account the 
numerical parameters variability. 

Since St is the sum of all terms above, by assumption it follows a normal law: 

• Centred on Ek = SCFD2(R) + (Mk –SCFD1(Ek)), that is the result of the reactor scale CFD 
calculation, corrected by calculation-measurement difference (as seen on test number k). 

• With a standard deviation σk that results from quadratic composition of the standard deviations 
of the Gaussian distributions corresponding respectively to: measurement uncertainty, 
propagated uncertainty of reactor scale conditions, propagated uncertainty of test case scale 
conditions and the numerical parameters variability. This expression is written: 

 𝜎𝜎𝑘𝑘= �𝜎𝜎(𝑚𝑚𝑘𝑘−𝑀𝑀𝑘𝑘)2+𝜎𝜎(𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1(𝐸𝐸𝑘𝑘)−𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1(𝑒𝑒𝑘𝑘))2 +𝜎𝜎(𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2(𝑟𝑟)−𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2(𝑅𝑅))2 +𝜎𝜎(𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1(𝑒𝑒𝑘𝑘)−𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2(𝑒𝑒𝑘𝑘))2  

The Sk
5 value is the 5th percentile of the distribution of St calculated in this way. It is smaller (or 

greater, depending what is penalising) than 95% of the (estimated) possible values of St. This S5k value 
is relative to one particular test k. 
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𝑺𝑺𝒌𝒌𝟓𝟓 = 𝑬𝑬𝒌𝒌 − 𝟏𝟏.𝟔𝟔𝟔𝟔𝟔𝟔 ∗  𝝈𝝈𝒌𝒌 (1) 

The distribution of the Sk
5 is considered for a series of K tests. We thus define S5/95 (with 95% 

confidence) as being the average of the Sk
5 corrected by a factor S5 which multiply the standard deviation 

σ5 of the distribution of the K Sk
5. This factor – the Student factor 5/95 – is a function of the total number 

K of tests k (it is a function of a target probability, confidence level and degrees of freedom – the values 
are presented in the Figure 4. Student's distribution table  
Uncertainty Quantification and Sensitivity Analysis in CFD based on Distinction between Categorical 
and Continuous Variables Figure 4 

𝑺𝑺𝒌𝒌/𝟗𝟗𝟗𝟗 = 𝑺𝑺𝟓𝟓  ± 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝟓𝟓.𝟗𝟗𝟗𝟗;𝒏𝒏) ∗  𝝈𝝈𝟓𝟓 (2) 

where « n » represents the number of experimental tests, 

𝑺𝑺𝟓𝟓 =  ∑ 𝑆𝑆𝑘𝑘
5𝑛𝑛

1
𝑛𝑛

 and 𝜎𝜎𝟓𝟓 = �∑ (𝑆𝑆𝑘𝑘
5−𝑆𝑆5)2𝑛𝑛

1
(𝑛𝑛−1)

 (3) 

1.2 Method used for the benchmark 

Since we want to determine an uncertainty band in this benchmark and not a penalising value, we will 
calculate the 2.5th and the 97.5th percentile of the experimental values, which means: 

𝑆𝑆𝑘𝑘𝟐𝟐.𝟓𝟓 = 𝐸𝐸𝑘𝑘 − 1.645 ∗  𝜎𝜎𝑘𝑘  (4) 

And 

𝑆𝑆𝑘𝑘97.5 = 𝐸𝐸𝑘𝑘 + 1.645 ∗  𝜎𝜎𝑘𝑘 (5) 

Then, the confidence level of 95% will be calculated for both percentiles previously calculated: 

𝑆𝑆𝑘𝑘/95 = 𝑆𝑆5  ± 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(5.95;𝑛𝑛) ∗  𝜎𝜎5  (6) 

Thus, we obtain two different interval of confidence (see the green dotted lines in Figure 2). Finally, in 
order to give the upper and the lower bound of the reactor case, it was decided to take the lower interval 
of the 2.5th percentile and the upper interval of the 97.5th percentile (see the orange line in Figure 2). 
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Figure 2. How our intervals are calculated 

Type the subtitle here. If you do not need a subtitle, please delete this line. 

 
2. Selection of uncertainty sources 

a. Numerical and modelling parameters 

Since the k-epsilon (k-Ɛ) model is chosen for this benchmark, the constants of this model will be 
varied. That means: Cμ, σk, σε, cε1 and cε2 cε2. The theoretical possible values of cε1 and cε2 were 
found in literature. The variations of Cμ, σk and σε were taken according to the order of variations of 
those constants in the k-Ɛ RNG model. All these data are summarised in the following Table 1. 

Table .1. Numerical/modelling parameters uncertainties 

 Value 1 Value 2 Value 3 Sources 
Cμ 0.082 0.090 0.096 Speziale, et al., 1991. 
σk 0.92 1.00 1.08 Yakhot, et al., 1986. 
σε 1.22 1.30 1.38 Yakhot, et al., 1986. 
cε1 1.36 1.44 1.52 Launder, et al., 1970. 
cε2 1.84 1.92 2.00 Launder, et al., 1970. 

Just three different values were taken for the constants because of time computation restrictions. 
Indeed, with 3 different values for 5 different parameters, 35 = 243 computations should be carried out 
for one experimental case. 
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b. Initial and boundaries conditions 

It is necessary to take into account the precision of the fluid temperature measurements as uncertain 
parameters on boundaries conditions. We suppose that the temperature errors made by measurements are 
less than 2 degrees. This error is taken into account when evaluating the fluid physical properties, as 
shown at the Table 2. 

Table .2. Uncertainties on fluid physical properties 

 Value 1 Value 2 Value 3 
T (°C) 18 20 22 
ρ (kg/m3) 998.7 998.0 997.8 
μ (kg/m.s) 0.001054 0.001002 0.000955 

For the solution containing water and sucrose, same order of variations will be taken. Thus, the values 
are summarised at the Table 3. 

Table .3. Fluid+sucrose physical uncertainties 

 Value 1 Value 2 Value 3 
T (°C) 20 22.5 25 
ρ (kg/m3) 1008.7 1008.0 1007.8 
μ (kg/m.s) 0.001038 0.000991 0.000944 

A programme was created in order to handle the uncertainties on the velocity and kinetic energy inlet 
profiles. This programme draws randomly a profile around the mean inlet profiles with the same standard 
deviation. An example of obtained profile is shown in red in the Figure.3 (the blue one is the initial 
profile). Since this is a random plot, we can obtain more and less “chaotic” plots by varying a random 
parameter. 

Figure 3. inlet (blue) and new (red) velocity profiles at the inlet 
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Figure 4. Student's distribution table  
Uncertainty Quantification and Sensitivity Analysis in CFD based on Distinction between 

Categorical and Continuous Variables 
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Short description of the method 

The main idea of this method is to make the distinction between categorical and continuous variables to 
propagate only uncertainties associated to continuous variables. This distinction between continuous and 
categorical variables is justified by the fact that we do not want to assign a probability to each level of 
categorical variables.  

Uncertainties are propagated for given levels of the categorical variables. For the propagation step, a 
meta-model is built with a third degree polynomial chaos expansion. For each point of considered 
profiles (mean velocity, concentration, turbulent kinetic energy), uncertainties bands are determined 
using order statistics, and correspond to 2.5% and 97.5% percentiles. 

Sensitivity analysis can then be obtained by two ways:  

• In a quantitative way for a given level of a categorical variable, using Sobol indices for example to 
see the influence of continuous variables.  

• In a qualitative way, by plotting uncertainty bands associated to a quantity of interest (for example 
the concentration of the fluids at a given point) for all levels of several categorical variables. By 
doing this we can see the influence of different levels of the categorical variables considered. 

Uncertain parameters 

Here are introduced the list of uncertain parameters. 

To deal with the turbulence, a standard k-epsilon (k-Ɛ) model was used. We consider that some of 
parameters of this model are uncertain, namely the constants 𝑐𝑐1𝜀𝜀 , 𝑐𝑐2𝜀𝜀 , 𝑐𝑐3𝜀𝜀 , 𝑐𝑐𝜇𝜇 and also the prandtl 
numbers denoted by 𝑃𝑃𝑃𝑃𝐾𝐾 and 𝑃𝑃𝑃𝑃𝜖𝜖. 

Since the mixing zone length is much greater than its height as well as the density difference between 
the two fluids is negligible, the Boussinesq approximation was used. The concentration of fluids was 
obtained by considering a constituent transportation with an eddy viscosity turbulence model and a 
turbulent Schmidt number. A standard wall law parametrised by the same turbulent Schmidt number was 
used. This coefficient, denoted by 𝑆𝑆𝑆𝑆, controls the turbulent diffusion of the concentration between the 
two fluids. 

Nominal values of these parameters were obtained on simple configurations and we consider that they 
may vary on more complex configurations. That is why it was decided to consider them as uncertain. 

A last parameter was considered as uncertain, namely the 𝛼𝛼 parameter associated to the so-called 
EF_stab convection scheme in TrioCFD1. The convection scheme is a mix between a centred and 
upwind scheme, and this relation can be expressed as: (1 − 𝛼𝛼) centred + 𝛼𝛼 upwind. This parameter was 
considered as uncertain since it controls the diffusivity of the scheme and its assigned value often 
depends on users. 

When an uncertain parameter denoted by 𝑝𝑝 follows a normal distribution of mean 𝜇𝜇 and standard 
deviation 𝜎𝜎, then we write 𝑝𝑝~𝒩𝒩(𝜇𝜇,𝜎𝜎2). When this parameter follows a uniform distribution between a 
minimal value 𝑚𝑚𝑚𝑚𝑚𝑚 and a maximal value 𝑚𝑚𝑚𝑚𝑚𝑚, then we write 𝑝𝑝~𝒰𝒰(𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚). 
                                                      

1.  Formely known as Trio_U. 
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The distribution law of uncertain parameters is introduced below: 

𝑐𝑐1𝜀𝜀~𝒩𝒩(1.44, 0.005184) 𝑃𝑃𝑃𝑃𝐾𝐾~𝒩𝒩(1.0, 0.0025) 

𝑐𝑐2𝜀𝜀~𝒩𝒩(1.92, 0.009216)  𝑃𝑃𝑃𝑃𝜖𝜖~𝒩𝒩(1.3, 0.004225) 

𝑐𝑐3𝜀𝜀~𝒩𝒩(1.00, 0.0025) 𝑆𝑆𝑆𝑆~𝒩𝒩(0.7,  0.001225) 

𝑐𝑐𝜇𝜇~𝒩𝒩(0.09, 0.00002025) 𝛼𝛼~𝒰𝒰(0.3 , 0.7) 

Remarks about CFD simulations 

An important fact to keep in mind is that the quality of CFD results has an important impact on the 
quality of uncertainty bands. Although we deal with a 3D phenomenon, we decided to start with a 2D 
modelling. The problem with this decision is that the velocity field is underestimated, as well as the 
turbulent kinetic energy. 

To deal with inlet boundary conditions, a fully 3D developed profile was obtained by an independent 
simulation in the upper leg, considering periodic boundary conditions at the inlet and outlet. Considering 
a 2D slice this profile was then analytically approximated by a polynomial in order to be injected in the 
2D simulation. Despite this, we miss some 3D phenomena and numerical results are impacted. That 
means that uncertainty bands are also impacted. 

No sensitivity analysis was yet performed: neither quantitatively, nor qualitatively. We will continue 
the work around uncertainty quantification on Gemix, considering 3D simulations. 
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Item Short description Information 
1 Method used in the 

quantification of 
uncertainties 

Non-intrusive Polynomial Chaos Expansion 

2 Selection of the 
uncertainty sources 

Value of µC for turbulent viscosity ( 1.0~10 7−=µC ). 

Turbulent Schmidt number of 1.0=tSc  is chosen from 
the simulations for N320 case. 

3 How to construct the 
uncertainty bands Mean value: ∫−

>=<
b

a

dxxf
ab

f )(1 obtained from Gauss 

quadrature method (three points) 

∫∫
′

′−
=

−
>=<
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ab

dxxf
ab
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Uncertainty band:
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obtained from Gauss quadrature method (three points) 
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1. Introduction 

The benchmark exercise has been executed according to the ASME V&V 20-2009 standard for 
validation and verification and uncertainty quantification for CFD applications. An uncertainty 
propagation method with Latin Hypercube Sampling (LHS) is used to evaluate the uncertainty of input 
parameters related to material properties, initial conditions and boundary conditions. Richardson 
extrapolation is used to evaluate spatial discretisation uncertainty. CFD 2D steady state simulations are 
performed by ANSYS Fluent v14.0 with low Re Abid 𝑘𝑘 − 𝜀𝜀 turbulence model. 

2. ASME V&V 20-2009 

The ASME V&V 20-2009 standard is strongly based on the use of experimental data for V&V and 
consequently for UQ. With this approach, ASME makes a strong link between V&V and UQ. The global 
VVUQ process is given below. 

Figure 1. Errors and uncertainties in the ASME V&V 20-2009 process 

 
 

According to the standard V&V 20-2009, the comparison error E in any validation process is defined 
as the difference between the simulation result, denoted by 𝑆𝑆, and the experimental value 𝐷𝐷 and if we 
denote 𝑇𝑇 as the true value, then the comparison error can be split into the following: 

𝐸𝐸 = 𝑆𝑆 − 𝐷𝐷 = (𝑆𝑆 − 𝑇𝑇) − (𝐷𝐷 − 𝑇𝑇) 

Then, one defines the experimental data error 𝛿𝛿𝐷𝐷and the simulation error 𝛿𝛿𝑆𝑆, as follows: 

𝛿𝛿𝐷𝐷 = 𝐷𝐷 − 𝑇𝑇 

𝛿𝛿𝑆𝑆 = 𝑆𝑆 − 𝑇𝑇 



88 │ NEA/CSNI/R(2017)19 
 

  
      

The simulation error 𝛿𝛿𝑆𝑆 has three components, the first one is the error due to the modelling process 
𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚; the second is the numerical error 𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛 produced by the numerical algorithm and the discrete 
mesh used to solve the modelling equations; and the third is inputs error (IC, BC, properties, …) 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 
The standard uncertainty, 𝑢𝑢𝑆𝑆 is an estimate of the standard deviation of the distribution of 𝛿𝛿𝑆𝑆: 

𝛿𝛿𝑆𝑆 = 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑢𝑢𝑆𝑆 = �𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 + 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛2 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖2  

Going back to the comparison error 𝐸𝐸, this can be written as:  

𝐸𝐸 = 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + (𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛿𝛿𝐷𝐷) 

thus, 𝐸𝐸 is the overall result of all the errors coming from the experimental data and the simulation setup. 
From validation point of view, 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 produced by the modelling is isolated: 

𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸 − (𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛿𝛿𝐷𝐷) 

where: 

• E is known from the open tests; 

• Signs and magnitude of δnum, δinput, and δD are unknown  estimated by standard uncertainties: 
unum evaluated via Richardson extrapolation, uinput evaluated via uncertainty propagation 
method, and uD which is known from open tests. 

If these errors are really independent, the combined validation uncertainty is given by the expression:  

𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣 = �𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛2 + 𝑢𝑢𝐷𝐷2  

Finally, 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝐸𝐸 − 𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣  ,𝐸𝐸 + 𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣] and we have assumed conservatively 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |𝐸𝐸| + 𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣. 

In summary, for the blind test N318, we have evaluated the CFD simulation uncertainty for velocity, 
turbulent kinetic energy and concentration: 

𝑢𝑢𝑆𝑆,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 + 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
2  

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is obtained as a combination from open tests validation (N339, N337, N320): 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≡ [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁339 ,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁337,  𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁320� 

[𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [|𝐸𝐸|]𝑜𝑜𝑜𝑜𝑒𝑒𝑛𝑛 + [𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣]𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

[|𝐸𝐸|]𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [|𝑆𝑆 − 𝐷𝐷|]𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

[𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣]𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ��𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛2 + 𝑢𝑢𝐷𝐷2 �
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 

The data delivered from our side contain the simulated values 𝑆𝑆 for velocity, turbulent kinetic energy 
and concentration at the requested 𝑦𝑦 and 𝑥𝑥 positions, as well as the symmetric uncertainty bands 
corresponding to ±2𝜎𝜎 around the mean, namely 𝑆𝑆 ± 𝑢𝑢𝑆𝑆. 

3. Uncertainty in input parameters: 𝐮𝐮𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 

The uncertainty of input parameters related to material properties, initial conditions and boundary 
conditions have been considered. The most relevant inputs are the velocity and turbulent kinetic energy 
profiles at the inlet. Since the 𝑘𝑘 − 𝜀𝜀 turbulence model is selected for the CFD simulations, the 𝜀𝜀 profile is 
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mapped together with 𝑘𝑘 at the inlet, using Fluent’s definition: 𝜀𝜀 = 𝐶𝐶𝜇𝜇0.75 𝑘𝑘
1.5

𝑙𝑙
. In this definition, the 

turbulent length scale 𝑙𝑙 appears, another input parameter. 

The input uncertainties have been characterised by a PDF according to the available data provided and 
expert judgement. In order to propagate the uncertain input parameters according to their PDFs, the 
RAP++ software (Reliability Analysis Program) was used, which is able to extract both a set of random 
Monte Carlo (MC) samples and a set of deterministic samples, namely with the LHS. In a preliminary 
analysis by means of RAP++/Fluent loops we investigated the importance of each input parameter on the 
uncertainty in the results. The velocity, turbulent kinetic energy and turbulent length scale appeared the 
most dominant input parameters. These parameters were, therefore, selected to be applied in our UQ 
method. 

With LHS the domain is first divided into sub-domains, instead of sampling random points in the 
whole domain, having equal probability content. Only one sample is taken in each sub-domain. In order 
to determine 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 we sampled 20 points as shown in Figure 2, i.e. 21 simulations including the mean 
point.  

4. Numerical uncertainty: 𝐮𝐮𝐧𝐧𝐧𝐧𝐧𝐧 

We have evaluated as numerical uncertainty the combination of spatial discretisation errors and iteration 

errors: 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 . 

The reference setup of fluent simulations is carachterised by residuals set to 1E-6 and a base mesh 
containing 62 418 cells. The iteration uncertainty uiter is evaluated fetching the residuals up to 1E-8 for 
the base mesh. 

The discretisation uncertainty 𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is evaluated via Richardson extrapolation using two additional 
more refined meshes in both 𝑥𝑥 and 𝑦𝑦 directions with grid spacing ratio 𝑟𝑟 = 1.6, in agreement with 
ASME recommendation. 

5. Summary and conclusions 

The benchmark exercise has been executed according to the ASME V&V 20-2009 standard for 
validation & verification and uncertainty quantification for CFD applications. Uncertainty propagation 
method with deterministic-like sampling is used to evaluate uncertain input parameters (𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), namely 
a LHS. Richardson extrapolation is used to evaluate the spatial discretisation uncertainty (𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛). CFD 
2D steady state simulations are performed by ANSYS Fluent v14.0 with low Re Abid 𝑘𝑘 − 𝜀𝜀 turbulence 
model. 

The data delivered from our side for the blind test N318 contain the simulated values 𝑆𝑆 for velocity, 
turbulent kinetic energy and concentration at the requested 𝑦𝑦 and 𝑥𝑥 positions, as well as the symmetric 
uncertainty bands corresponding to ±2𝜎𝜎, namely 𝑆𝑆 ± 𝑢𝑢𝑆𝑆. Figure 2, Figure 3 and Figure 4 show our 
results for the blind test N318. 
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Figure 2. Blind N318 test computed velocity (S) with ±2σ uncertainty (uS) 

 
   ______________________________________________________________   

Figure 3. Blind N318 test computed turbulent kinetic energy (S) with ±2σ uncertainty (uS) 

 
   ______________________________________________________________   

Figure 4. Blind N318 test computed concentration (S) with ±2σ uncertainty (uS) 

 
   ______________________________________________________________   
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User-10 

1. Source of the uncertainty: components of input velocity

Running simulations for open tests, namely N320, N337 and N339, we first checked several different 
criteria, e.g. we made mesh size sensitivity study, turbulence (RANS) model sensitivity study, in order to 
ensure that these elements have no or at most negligible influence on final results. The second step was 
to introduce variability of input parameters in the range given by organisers, in order to estimate 
uncertainties for considered cases. 

In fact, we found strong dependence and great influence of input velocity profile on all output profiles 
(both measureable like velocities and concentration and derived like turbulence kinetic energy). 
However, very interesting for us was to observe the behaviour of XY (2D) output velocity profiles when 
varying only a input Z-velocity component keeping the two other fixed. This observation lead us to focus 
on effects occurring while treating the input velocity components separately. 

2. Method for UQ quantification: Monte Carlo input error propagation

Having significant computing resources, we could easily handle and run hundreds of simulations, tens of 
them in parallel using 80 cores per each. Such conditions favoured us to choose robust Monte Carlo 
approach. We assumed to prepare more than hundred (exactly 144) of sets of input setup where 
3 velocity components where generated separately for each case, but not entirely random. For each 
velocity component, we prepared a Gaussian distribution over a given range of velocities for every single 
input point, basing on the available data. The procedure for creating a single input setup was as follows: 

1. We drew 3 random numbers (coefficients): 𝑪𝑪𝟏𝟏, 𝑪𝑪𝟐𝟐 and 𝑪𝑪𝟑𝟑 – each one from a different (Gaussian)
normal distribution (see Figure 5) 
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Figure 5. _ 3 random numbers 
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2. We calculated an exact value for an every single point in the particular velocity component
profile (i.e. 𝑈𝑈𝑥𝑥, 𝑈𝑈𝑦𝑦 or 𝑈𝑈𝑧𝑧). The set of equations for the i-th point is presented below: 

𝑈𝑈𝑥𝑥,𝑖𝑖 = 𝑉𝑉𝑥𝑥,𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉,𝑖𝑖 + 2 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉,𝑖𝑖 × 𝐶𝐶1 

𝑈𝑈𝑦𝑦,𝑖𝑖 = 𝑉𝑉𝑦𝑦,𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉,𝑖𝑖 + 2 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉,𝑖𝑖 × 𝐶𝐶2 

𝑈𝑈𝑧𝑧,𝑖𝑖 = 𝑉𝑉𝑧𝑧,𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉,𝑖𝑖 + 2 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉,𝑖𝑖 × 𝐶𝐶3 

In other words, all 144 input sets are based on 3 numbers (3 coefficients) drawn from 3 different 
Gaussian distributions. Each coefficient served as a multiplier for a whole velocity component profile, so 
it could not (at least significantly) change a shape of this profile, but it could shift this profile from its 
‘mean’ (averaged) position to either min or max allowed value. Such a situation could lead to a case of 
increased Y or Z component influence on velocity magnitude in contrast to decreasing X-velocity 
influence. 

3. Comments on results post-processing

In order to extract data, we had prepared a python-script that extracted min, mean and max-value for 
every single measurement point in the output profiles from over each of 144 simulations. The set of min-
values become, finally, a U-dU or K-dK or C-dC depending on a parameter. The max-values become 
U+dU, K+dK, C+dC and for mean values a set of average result values become a U, K or C. When we 
refer to the ‘average’ we mean an arithmetical average calculated from a set of 144 result values obtained 
for a specific point and parameter, this mean there is no symmetry between upper and lower band. 
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User-11 

The participants User 11 used deterministic sampling method for calculating sensitivity coefficients. 

Sensitivity coefficients (uncertain parameters):  

• - S1- turbulence models (LES or RANS-LES [RANS – inlet region, LES – mixed zone]); 

• - S2- mesh size. 

1. Short description of the deterministic sampling method 

The goal of this method is to predict how the results from a simulation are affected by one or more 
uncertain input parameters. These uncertain parameters might be any physical model constant, the value 
of a fluid or solid property, boundary condition values, or geometric parameters. The term deterministic 
is used as opposed to random. Random sampling is used in the Monte Carlo simulation, where the 
parameter values are randomly generated to satisfy a specified probability distribution function (PDF). In 
the deterministic sampling (DS) method, the parameter values are instead calculated (Julier and 
Uhlmann, 2004; Hessling, 2013). Unlike the ensemble in the Monte Carlo method, which tries to 
represent a continuous PDF, the DS method represents the PDF with an ensemble that has the same 
statistical moments but contains much fewer samples. Each sample requires one simulation. In the DS 
method, the required number of simulations can be reduced substantially: by a factor of at least four 
orders of magnitude. This is key to be able to afford UQ in CFD and in all other simulations with long 
execution times. 

2. Statistical moments 

In DS, one tries to satisfy the statistical moments of a PDF. The first statistical moment is the mean, 
the second moment is the variance, the third is the skewness, and the fourth is the kurtosis or flatness. 
For a parameter, q, with an ensemble containing N samples, these can be written 

qq
N

mean
N

i
i == ∑

=1

1  

( )∑
=

−=
N

i
i qq

N 1

21var  

var=σ  
Arbitrarily higher moments can be represented with DS by adding new samples to the ensemble. To 

represent the mean and the variance of a parameter, q, a minimum of two samples is required. 
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User-15 

1. Selection of the uncertainty sources  

Since the uncertainties in the inlet boundary conditions and fluid properties were almost negligible, we 
selected the free coefficients of the Shear Stress Transport (SST) turbulence model as uncertain input 
parameters. 

SST combines k-ω and k-ε turbulence models, using k-ω close to the walls and k-ε elsewhere. The SST 

model has 10 free coefficients: 2 global parameters (β* and a_1), 4 for the k-ω regime (σ_k1, σ_ω1, α_1 

and β_1) and 4 for the k-ε regime (σ_k2, σ_ω2, α_2 and β_2). From all these coefficients, only the global 

and k-ω ones were considered, as the k-ε model was only active in a small region of the domain. These 

6 coefficients can be linked to 4 parameters [Reference], which were eventually used as uncertain input 

parameters. 

2. Propagation method 

The method used was Polynomial Chaos (PC), which is based on projecting the response of the system 
into an orthogonal polynomial basis, selected in such a way that the mean and the variance of the 
response can be easily obtained.  

The PC expansion was performed at first order, and the coefficients of the expansion computed by 
means of Gaussian quadrature. Sixteen simulations were used for the blind case. 

3. Construction of uncertainty bands 

The uncertainty bands correspond to ±2σ. 

Reference 

Margheri, L., M. Meldi, M.V. Salvetti and P. Sagaut (2014), “Epistemic uncertainties in RANS model 
free coefficients”, Computers and Fluids, 102, pp. 315-335. 
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User-18 

Uncertainty Quantification Method:  Polynomial Chaos Expansion 

Velocity profiles were parameterised by a linear spline function factored assuming a normal distribution 
of the velocity over the uncertainty range. 

𝑈𝑈 =  𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑋𝑋𝑈𝑈𝑈𝑈95/2 

Here 𝑋𝑋𝑈𝑈 = ±1.653. 

The Reynolds stresses were parameterised by a cubic spline function assuming a uniform distribution 
of the Reynolds stresses over the uncertainty range. 

𝑅𝑅𝑖𝑖𝑖𝑖  =  𝑅𝑅𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑋𝑋𝐾𝐾(𝑅𝑅𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚) 

Here 𝑋𝑋𝐾𝐾 = 0.488085. 

1. Input uncertainties 

A process was completed using expert opinion to identify potential sources of uncertainty for the CFD 
model. These include geometric factors, modelling factors, the grid, boundary conditions, material 
properties, etc. Estimates of the potential uncertainty for each of these parameters were made using the 
test information if provided or engineering judgement if necessary.  Sensitivity studies were conducted 
on each parameter to determine which input parameters could have a significant impact on the solution. 
The results were ranked according to their sensitivity and a total of 6 inputs (along with the mesh size) 
were found to be significant. The other inputs were not significant. Each of the 6 inputs, along with their 
estimated 95% (2 σ) confidence intervals is listed in Table .1. 

Table .1. Inputs that contributed to solution uncertainty and their confidence intervals 
The abbreviations next to each input are used in the sensitivity documentation.   

Input sensitivity 95% (2 s) Confidence Interval 

TI           Turbulence Intensity 4.5% ± 2% 

Sct         Turbulent Schmidt Number 0.475 ± 0.175 

TopTilt   Upper channel Tilt* 

BotTilt    Lower channel Tilt* 

TopM     Upper channel mass flow rate 

-0.01 ± 0.02 

-0.01 ± 0.02 

1.219 ± 0.024 kg/s 

BotM      Lower channel mass flow rate 1.230 ± 0.025 kg/s 

              Mesh Determined via GCI 

 
*The tilt was a linear variation, defined in Equation 1, applied to the experimental inlet velocity data. Its 
purpose was to account for possible asymmetry in the velocity inlet boundary condition. 
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Equation 1 
tilt factor (y)  =  -2*Tilt*(y+0.025)/0.05 + 1 + Tilt          y(m) (1) 

The grid convergence index (GCI) was used to estimate the solution uncertainty due to the mesh. The 
refinement (r = 2) was accomplished by successively dividing each cell side in half. The resulting refined 
meshes had 13 102 272 and 104 818 176 cells starting from the base mesh of 1 637 784 cells. The rate of 
convergence, p, was calculated using Equation 2. The convergence rates for various points were found to 
be close to 1 and a final value of 1.0 was used for the GCI determination. The safety factor, Fs, was set to 
1.25 which is considered reasonable due to the quality of the mesh and the refinement process. The GCI 
is used to estimate a bias in the results for the base mesh which is added into the uncertainty in the 
direction of the bias. 

Equation 2  
p = ln[(fm – fc)/(ff – fm)]/ln (2) 

where f is the solution value and c, m, and f correspond to the coarse, medium, and fine meshes. 

2. UQ method 

It is assumed that each of the inputs that contributed to the solution uncertainty are independent. After 
calculating the second order sensitivity coefficient for each parameter using an input variation of ± 0.2 σ, 
an individual parameter uncertainty was calculated by multiplying the 2 σ uncertainty in the input 
parameter with the sensitivity coefficient. The 95% (2 σ) confidence interval based on the input 
parameter uncertainties is calculated by combining the individual parameter uncertainties using a root 
sum square approach (Equation 3).  

Equation 3 
U = sqrt (sum (ci2ui2))  (ui is the 2 σ uncertainty and ci is the sensitivity for the i-th input) 

The uncertainty determined from the grid convergence index (GCI) was included in the total reported 
uncertainty by adding it to the uncertainty found from the input uncertainty parameters. In general, the 
GCI uncertainty was added to one side of the uncertainty band based on the direction of the grid 
convergence (increasing or decreasing values). In the few points where the convergence was oscillatory 
and a clear direction for the convergence was not found, the GCI uncertainty was added to both the 
positive and negative sides of the uncertainty band. 
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User-20 

Short description of the UQ method 

The uncertainty quantification method implemented was a Monte Carlo simulation to vary the inlet 
boundary conditions. The densities and inlet velocities of each fluid were the specific conditions varied. 
The implementation of the UQ on these boundary conditions was due to potential impact on the 
simulation results. This is especially important when the mesh was developed carefully to appropriate 
capture the physics involved. Further by carefully selecting an appropriate turbulence model, the inlet 
boundary conditions became the most sensitive to variation. The uncertainty reported for the 
measurement of the inlet conditions was provided. This provides a simple comparison based of the 
experimental and computational uncertainties. 

Monte Carlo random sampling based on a normal distribution for velocity and a uniform distribution 
for density was chosen due to the simplicity of implementation with a commercial solver. By sampling 
different inlet velocities and densities for each inlet, the prorogation of uncertainty was able to be 
repeated many times. The large number (40) of samples provided for more accurate statistics to be 
produced. To illustrate this more clearly, if 40 inlet velocities sets and densities were sampled, there 
would be 40 CFD simulations. At every spatial data point requested in the mixing section, 40 values for 
velocity in the x direction, concentration, and turbulent kinetic energy (TKE) were extracted. This large 
data set was then imported into Matlab for statistical analysis. The mean, 5th and 95th values for velocity, 
concentration, and TKE were calculated and exported as data files for submission. 

Sensitivity coefficients were not produced for this project. 
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