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    Foreword  

Monte Carlo criticality calculations involve a two-step procedure based on a stochastic 
implementation of the power iteration method: first, achieve convergence of the fission 
source distribution during the “inactive cycles”, and then sample from this source during 
the “active cycles”. Both phases involve distinct challenges in order to avoid potential 
issues related to lack of convergence (for inactive cycles) and undersampling and/or 
clustering (for active cycles). Over the past several years, under the auspices of the Nuclear 
Energy Agency (NEA), the Expert Group on Advanced Monte Carlo Techniques (EG-
AMCT) of the Working Party on Nuclear Criticality Safety (WPNCS) investigated the 
phenomena of clustering and undersampling in Monte Carlo criticality calculations. A 
previous Expert Group on Monte Carlo Source Convergence developed breakthrough 
methods for graphically assessing the initial convergence of the Monte Carlo fission source, 
using Shannon entropy or Brownian bridge metrics. Much was accomplished in 
understanding these phenomena, from both theoretical and practical approaches. Those 
efforts have led to a number of ideas and challenges for new subgroup study topics. The 
WPNCS Subgroup 6 (SG-6), which ran during 2019-2020, is a direct follow-on to those 
previous efforts to improve the understanding of and capabilities for Monte Carlo criticality 
calculations. 

There is a strong need for statistical testing to determine fission source convergence in 
Monte Carlo criticality calculations. Automation of such tests will greatly streamline and 
support the work carried out by nuclear criticality safety practitioners. Recent research and 
development (R&D) work has shown that no single statistical test for convergence is 
sufficiently reliable, robust and “guaranteed”. However, a combination of several standard 
statistical tests for the similarity of distributions, coupled with a high-fidelity estimate of 
the fission-matrix source, is sufficiently robust, reliable and repeatable that convergence 
can be “guaranteed”. 

During the course of the EG-AMCT studies, a number of statistical metrics and tests were 
proposed for diagnosing clustering and undersampling. None of these was robust and 
reliable enough for practical use in production codes. However, the expert group efforts 
came close. Some recent R&D work stemming from those past efforts has been successful 
and promising.  

SG-6 was established to provide international input and collaboration on the development 
and implementation of statistical tests for convergence, with the primary goal of having the 
Monte Carlo codes automatically detect convergence (or lack thereof). Newly proposed 
statistical tests to detect undersampling (after convergence) are also reviewed. 
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Executive summary 

Monte Carlo (MC) methods have been used for over 60 years in nuclear criticality safety 
(NCS) calculations. Significant burdens are placed on nuclear criticality safety analysts to 
properly run the calculations: (1) the initial guess for fission sites is defined by user input; 
(2) users must ensure that sufficient neutrons/cycle are used to prevent bias; and (3) users 
must ensure that enough cycles are discarded so that keff and the fission source have 
converged. In practice, a short run produces plots of keff and Shannon entropy of the fission 
neutron distribution, then the number of inactive cycles is manually set in the MC code 
input file, and a final run is made. NCS work often requires parameter studies with hundreds 
of runs. For these studies, it is not practical to follow all the recommended procedures, and 
conservative over-estimates are used for the number of inactive cycles.  

Recent work has addressed these burdens, providing automated acceleration of the 
convergence process, statistical tests for automatically determining convergence, and 
additional tests to assess whether a sufficient number of neutrons/cycle was used. These 
automated methods do not require user input and provide quantitative evidence of 
convergence. Testing on a wide range of problems has demonstrated that the methods are 
robust and reliable. 

Subgroup 6 (SG-6), under the auspices of the Nuclear Energy Agency (NEA) Working 
Party on Nuclear Criticality Safety (WPNCS), was established to exchange technical 
information on statistical testing to determine convergence of the MC power iteration 
process. Such techniques, representing the current state of the art for convergence testing, 
are reviewed and presented in this report, in particular: 

• seven tests using the slope-test on metrics computed within a block of cycles; 

• an eighth test to compare the average Shannon entropy for the block against a 
reference Shannon entropy from the fission-matrix solution at the end of the block; 

• three goodness-of-fit tests to compare the reference solution and the fission neutron 
distribution averaged over the cycles in the block. 

The ultimate goal is a collection of statistical tests for convergence that provides 
overwhelming evidence of convergence, a “guarantee” that convergence was achieved. 

This proposed series of 11 tests was trialled against an extended series of typical criticality 
calculation cases covering a variety of features, and has proved to be effective and robust. 
The outcome of such a trial is detailed in the report. 

Other statistical tests under investigation are discussed as potential further additions to the 
convergence tests suite.  

Finally, this report demonstrates that the automated convergence and statistical testing 
methods presented here remove common user pitfalls and provides quantitative, robust 
evidence of convergence, benefitting the work of nuclear criticality safety practitioners.  
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1. Introduction and background 

1.1. Monte Carlo criticality calculations – current state of the art 

For over 60 years, Monte Carlo (MC) criticality calculations for keff and the fission 
distribution have been solved using the power method, also called the method of successive 
iterations (Goad and Johnston, 1959; Brown, 2016). 

• A generation-based iteration scheme is used, and the neutron population is 
renormalised between successive iterations, as shown in Figure 1. Each generation is 
started with the same total number of neutrons N (or equivalently for mcnp6, total 
weight) and a number of neutrons N' is produced. N' is a stochastic variable, hence the 
renormalisation to N neutrons for the next generation is a biased process (Brissenden 
and Garlick, 1986). Further, the renormalisation reduces the number of independent 
neutron fission chains, introducing correlation among cycles. The correlation manifests 
as clustering for very low N (Dumonteil et al., 2014; Brown, 2017; Nowak et al., 2016). 

Figure 1. MC iteration scheme 

 
 
 
 
 
 
 
 
 
 
Source: NEA, 2020. 

• The bias in keff introduced by the renormalisation process is negative and proportional 
to 1/N (Gelbard and Prael, 1974; Brissenden and Garlick, 1986). The eigenfunction 
(i.e. fission distribution) is also biased proportional to 1/N, with additional 
complications of being too low in high-importance regions and too high in low-
importance regions. 

• The MC iteration scheme begins with an initial guess for keff and the fission 
distribution. Iterations (called inactive cycles) are performed without tallies until keff 
and the fission distribution have converged to their stationary state. After convergence, 
tallies are turned on, and iterations (called active cycles) are continued until sufficiently 
small uncertainties are obtained for desired results. 
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Significant burdens are placed on nuclear criticality safety (NCS) analysts, however, to 
properly run the MC calculations: 

• The initial guess for the fission source locations must be defined by user input. Ideally, 
the initial guess should be similar to the steady-state stationary distribution (i.e. the 
final result). Care must be taken to select the initial starting sites such that there are 
some fission sites located in each fissionable region of the problem. 

• Users must ensure that a sufficient number of neutrons per cycle is used to prevent bias 
in keff and errors in the fission source shape. For small to moderate sized problems, it 
has been shown that using N > 10 000 neutrons per generation effectively removes the 
bias in keff (Brown, 2009; Perfetti et al., 2017). For larger physical systems and for 
loosely-coupled problems, 100 000 or 1 M or more neutrons per generation may be 
needed. 

• Users must also ensure that a sufficient number of initial cycles is discarded so that keff 
and the fission source have converged to the steady-state, stationary distribution. In a 
typical traditional calculation, a short trial run is made to determine the number of 
inactive cycles based on plots of keff and the Shannon entropy (Ueki and Brown, 2002) 
of the fission neutron source distribution, H. Then, the number of inactive cycles to 
achieve convergence is manually set in the MC code input file. Finally, a definitive run 
is made to determine results, with additional cycles run until the uncertainties on results 
are small enough. 

While the procedures for running MC criticality problems properly are straightforward, 
they can be burdensome when many different problems need to be analysed: 

• It is common in NCS work to perform parameter studies, varying one or more 
parameters such as spacing or density and then running a MC criticality problem. Often 
100s or 1 000s of runs must be made to span the range of expected conditions. For 
these parameter studies, it is not practical to follow all of the recommended procedures 
discussed above, and typically very conservative over-estimates are used for the 
number of inactive cycles, resulting in excessive computer time. Additionally, 
determining proper convergence of the iteration process using plots of keff and the H is 
highly subjective due to the statistical variations in cycle-wise variations in keff and the 
H, and most users will conservatively choose the number of inactive cycles to be much 
larger than necessary. 

• Similar considerations apply to the running of large suites of benchmark problems as 
part of NCS validation of computational methods. 

• There have been no tests available for determining whether a sufficient number of 
neutrons per cycle was used to reduce the renormalisation bias to negligible levels 
(other than repeated calculations with different numbers of neutrons per cycle, an 
extremely burdensome task). 

• Separate from most NCS work, but important to the analysis of nuclear reactor core 
physics, is the issue of MC source convergence when a higher-level iterative scheme 
is used to alternate between MC neutronics and thermal hydraulic codes to determine 
consistent power and temperature distributions. These coupled multi-physics 
calculations are not amenable to manual observation of the MC source convergence. 
In addition, increased demands on resolution detail for fission rate tallies and material 
temperature distributions often require 500k or 1M or more neutrons/cycle. 
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1.2. Past efforts on convergence testing for MC criticality calculations 

From the 1950s through the early 2000s, convergence testing consisted of monitoring keff 

vs iteration cycle to determine when the asymptotic steady state was achieved. In practice, 
it was necessary to make a trial run and plot keff vs cycle, and then invoke a significant 
amount of practitioner judgement to determine the asymptotic condition in the presence of 
statistical noise from the MC simulation. From the 1950s through the 1990s, practitioners 
generally used 100s or 1 000s of neutrons/cycle due to limitations on computer memory, 
leading to significant statistical noise in the cycle plots. In those times, practitioners were 
unaware of the need to run 10k or more neutrons/cycle to avoid source renormalisation bias 
and were also unaware of the fact that the fission distribution can take significantly more 
cycles to converge than keff. Some very experienced users would also monitor fissions at 
symmetric locations in a reactor core, and if there were differences would continue to run 
more neutrons until symmetric results agreed within statistics. 

In the early 2000s, Shannon entropy of the fission neutron distribution was introduced into 
MC criticality calculations (Ueki and Brown, 2002; Ueki and Brown, 2005; Brown, 2006) 
as a metric for monitoring the convergence of the fission source, based on information-
theoretic considerations. It rapidly became evident that Shannon entropy (H) should be 
used to determine problem convergence, rather than keff. At about the same time, it was 
demonstrated that there was significant source renormalisation bias in results if only 100s 
or 1 000s of neutrons/cycle were used, and the “best practices” recommendations for using 
10k or more neutrons/cycle (and 100k or more for large problems) were introduced (Brown, 
2009). In the mid-2000s, basing convergence testing on H vs cycle and with less statistical 
noise due to larger neutrons/cycle, the assessment of convergence of the MC criticality 
power iteration process was greatly improved. The assessment process was still manually 
intensive due to the need for trial runs, examining plots and eyeballing the cycle that 
produced asymptotic behaviour. 

In the late 2000s, there were a few attempts at automated convergence testing (Nease and 
Brown, 2005; Brown et al., 2013). These previous attempts at automated convergence 
testing performed statistical slope-tests for only two quantities, keff and H, for blocks of 
cycles. While that is essentially what users do in examining plots of keff and H to assess 
convergence, the schemes were not sufficiently reliable or conclusive for NCS purposes. 
There were false positives or negatives 5-10% of the time in trying to automatically 
determine the cycle at which asymptotic behaviour was reached, an error rate much too 
high for NCS calculations. 

1.3. Current efforts on convergence testing for MC criticality calculations 

In the current work described in this report, 11 statistical tests are performed, including 
additional tests with sensitivity to spatial effects (e.g. the entropy for x-, y-, and z-marginal 
distributions) and tests for goodness-of-fit for distributions, with the fission-matrix 
eigenfunction used as a reference solution. While the previous work suffered from 
occasional false positives or false negatives, the current approach using 11 statistical tests 
has been reliable and robust for all problems tested. In addition, reporting of the results for 
the statistical tests provides documented evidence of the convergence assessment. It is quite 
evident that one or two statistical tests for convergence are not sufficient to “guarantee” 
that the power iterations have converged. Many more tests are needed to provide sufficient 
confirmation of convergence, and it is also important to include tests on a wide variety of 
both metric quantities and actual fission neutron distributions. 
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Recent work (Brown and Josey, 2018; Brown and Martin, 2018; Brown et al., 2019) has 
addressed these burdens, providing automated acceleration of the convergence process, 
statistical tests for automatically determining convergence, and additional tests to assess 
whether a sufficient number of neutrons per cycle was used. These automated methods 
determine the mesh spacing used for both statistical tests of the neutron distribution and 
the fission-matrix (with no user input) from cycle one estimates of physics results, provide 
adaptive meshing and a fission-matrix reference solution, and provide quantitative 
evidence of convergence. Testing on a wide range of problems has demonstrated that the 
methods are robust and reliable.  



14 | NEA/NSC/R(2021)3  

  
  

2. Calculational framework to support automated convergence testing 

In discussing statistical testing for the convergence of the MC power iteration process, a 
number of terms will be used to describe keff and the fission neutron distribution in a cycle, 
as well as a reference solution obtained using the fission-matrix method. In the definitions 
below, the subscript “neut” denotes quantities that refer to the actual distribution of 
neutrons in the MC simulation, while the subscript “FM” refers to separate reference 
quantities obtained using the fission-matrix method: 

keff or kneut  k-effective for a cycle determined in the normal manner by the MC 
 code, based on the neutron simulation within a cycle; 

kFM  k-effective for a reference solution obtained by solving the fission-
 matrix equations; 

S or Sneut  the distribution of fission neutrons at the end of a cycle in the MC 
  simulation, tallied in bins using the mesh for Shannon entropy  
  calculations; 

SFM  the distribution of fission neutrons for the fission-matrix reference 
solution obtained by solving the fission-matrix equations, based on 
the mesh for Shannon entropy; 

H or Hneut the Shannon entropy computed for Sneut, the fission neutron 
distribution in the MC simulation; 

HFM the Shannon entropy computed for SFM, the reference solution. 

In all that follows, a mesh is needed for computing Shannon entropy of the fission neutron 
distribution, and that same mesh is used for tallying the neutron distribution for statistical 
testing and the elements of the region-to-region fission-matrix probabilities. The reference 
solution from the fundamental mode eigenfunction of the fission-matrix corresponds to that 
same mesh. 

In order to support the automated use of statistical testing for convergence analysis, some 
changes are required to existing MC code algorithms. These changes are needed at a high 
level, and do not alter the low-level coding used for neutron simulation. Figure 2 illustrates 
the basic algorithmic flow required. A few initial cycles are needed to establish a mesh (for 
tallying the fission neutron distribution, in order to compute Shannon entropy, and for 
beginning related tallies of the fission-matrix for determining a reference solution). Then a 
block of cycles is run, where the number of cycles in a block is typically 10 or greater. 
Various metrics are computed and retained for each cycle in the block (e.g. pathlength 
estimate of keff, Shannon entropy of the fission neutron distribution, etc.). At the end of the 
block of cycles, statistical tests are performed on the sequence of metrics for the block and 
also goodness-of-fit tests can be performed comparing the fission neutron distribution at 
the end of the block to a reference solution. Currently, the reference solution is the fission 
neutron distribution obtained by solving the fission-matrix equations for the fundamental 
eigenfunction. 
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Figure 2. Calculational framework to support automated convergence testing 

 
Source: NEA, 2020. 

This SG-6 report is focused on the statistical testing for source convergence analysis and 
adequate population size (i.e. neutrons/cycle), and not on a particular MC computer code. 
Nevertheless, practical demonstration of the statistical testing methods is necessary for a 
wide variety of realistic MC application problems. To this end, the current development 
version of mcnp6 – mcnp6.3, tentatively scheduled for general release in 2021 – was 
modified to provide the calculational framework illustrated in Figure 2. The statistical 
testing methods detailed in Section 3 and Section 4 were then implemented and applied to 
the test problems detailed in Section 5. A few details on the calculational framework are 
provided in the next subsections on the automated adaptive meshing, fission-matrix 
method, and tallying and solving the fission-matrix equations. 

2.1. Automated meshing for convergence analysis 

An adaptive Cartesian mesh is used for determining Shannon entropy, Hneut, of the fission 
neutron source distribution, Sneut, and the starting/ending fission point bins for the fission-
matrix method (Brown et al., 2013; Carney et al., 2013). By default, a mesh spacing of Lfiss 
is used, where Lfiss is the root mean square (RMS) distance from birth to fission determined 
automatically during the initial cycle: 

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ��𝑤𝑤𝑛𝑛�𝑟𝑟𝑛𝑛 − 𝑟𝑟0,𝑛𝑛�
2

𝑁𝑁′

𝑛𝑛=1

 �𝑤𝑤𝑛𝑛

𝑁𝑁′

𝑛𝑛=1

� ,  

where 𝑟𝑟𝑛𝑛 is the location of a next-generation neutron born in fission, wn is the weight of 
that neutron, 𝑟𝑟0,𝑛𝑛 is the location where the parent neutron started, and N’ is the number of 
next-generation neutrons created in the cycle. Lfiss is trivial to calculate, using just the 
starting birth site and the resultant next-generation sites within a cycle, with tallies made 
only at the end of a cycle (i.e. there is no need to tally during the neutron random walks). 
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Lfiss is essentially the “migration length” from a fission in one generation to a fission in the 
next generation. 

For the present work where only the global shape of the fundamental mode eigenfunction 
is needed, numerical experiments were performed on the test problems cited below and on 
100s of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) (NEA, 
2019) benchmark problems to determine a recommended mesh resolution. It was found 
that using 1.0*Lfiss was suitable for all problems tested. That is, using a coarser mesh did 
not adequately capture the global shape of the fission distribution; using a finer mesh 
required many additional iterations for the fission-matrix to stabilise and produce a reliable 
solution. (If the mesh is too fine, very many neutrons may be needed to produce fission-
matrix tallies that are not too noisy.) While there are user input options to override the 
factor applied to Lfiss for determining the mesh spacing, all of the testing discussed below 
used the default spacing of 1.0*Lfiss. 

An adaptive Cartesian mesh is used for determining Shannon entropy, Hneut, of the fission 
source distribution, Sneut, and the starting/ending fission point bins for the fission-matrix 
method. During the first (inactive) cycle, tallies are made to estimate the RMS distance to 
fission, Lfiss. While the value of Lfiss is not precise, since it is based on the initial source 
distribution guess and only 1 cycle of neutrons, it provides an adequate physics-based 
distance for setting a mesh size for convergence analysis. By default, a mesh spacing of 
Lfiss is used. Then a Cartesian mesh is defined for the axis-aligned bounding box of fission 
points at the end of the first cycle, with N = nx ny nz mesh cells. The mesh storage is adaptive: 
if during subsequent cycles a source tally must be made in a location outside the mesh, the 
appropriate mesh dimensions nx, ny, nz are extended (keeping the same spacing) to include 
that region. Figure 3 illustrates the automated process of establishing and extending the 
mesh. 

Figure 3. Automated adaptive meshing 

 
Source: NEA, 2020. 
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2.2. Computing Shannon Entropy 

At the end of each cycle, Shannon entropy (Ueki and Brown, 2002; Ueki and Brown, 2005; 
Brown, 2006; Cover and Thomas, 2006) of the fission neutron distribution can be computed 
by simply counting the number of end-of-cycle fission neutrons in each of the mesh cells. 
Since the mesh is adaptive and may change during the iteration process, it is appropriate to 
use a normalised variant of Shannon entropy, where the conventional entropy of the 
distribution is divided by its maximum value. The normalised Shannon entropy then varies 
between 0 and 1, even when the mesh is expanded. For a mesh with nX .nY .nz mesh cells 
and a (normalised) fission neutron distribution Si,j,k on the mesh: 

𝐻𝐻 =  
∑ ∑ ∑   𝑆𝑆𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑛𝑛𝑍𝑍
𝑘𝑘=1 ∙ ln 𝑆𝑆𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑛𝑛𝑌𝑌
𝑗𝑗=1

𝑛𝑛𝑋𝑋
𝑖𝑖=1

ln(𝑛𝑛𝑋𝑋 ∙ 𝑛𝑛𝑌𝑌 ∙ 𝑛𝑛𝑍𝑍)
 

A related metric for the fission neutron distribution that accounts for spatial variation is the 
marginal entropy, HX, obtained by first collapsing the fission neutron distribution in the y- 
and z-dimensions, and then computing Shannon entropy for the 1-dimensional distribution 
in x: 

𝐻𝐻𝑋𝑋 =
∑ �∑ ∑ 𝑆𝑆𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑛𝑛𝑍𝑍
𝑘𝑘=1

𝑛𝑛𝑌𝑌
𝑗𝑗=1 �𝑛𝑛𝑋𝑋

𝑖𝑖=1 ∙ ln �∑ ∑ 𝑆𝑆𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑛𝑛𝑍𝑍
𝑘𝑘=1

𝑛𝑛𝑌𝑌
𝑗𝑗=1 �

ln(𝑛𝑛𝑋𝑋)
   

Similarly, HY and HZ marginal entropies can be computed for the y- and z-directions. 

The marginal entropies can be useful in detecting side-to-side shifts or oscillations in the 
neutron distribution during a block of cycles. 

2.3. Using the fission-matrix method to obtain a reference solution 

The fission-matrix, F, is an N x N matrix (where N is the number of mesh cells), where 
each element FI,J represents the number of fission neutrons produced in mesh region I per 
fission neutron source in region J. It is a set of N discretised point-to-point Green’s 
functions representing the connectivity among all of the mesh cells. Given the fission-
matrix F, the fundamental mode eigenvalue and eigenfunction are obtained by solving the 
equations: 

𝑆𝑆𝐹𝐹𝐹𝐹 =  
1
𝑘𝑘𝐹𝐹𝐹𝐹

∙ 𝐹𝐹 ∙ 𝑆𝑆𝐹𝐹𝐹𝐹 

The FI,J elements can be tallied even during the inactive cycles in the MC power iterations 
and can be accumulated over both inactive and active cycles (Brown et al., 2013). The 
fundamental eigenfunction of the fission-matrix, SFM, is an accurate solution of the 
criticality problem, and is not subject to bias from source renormalisation like the neutron 
distribution is. SFM converges much more rapidly than the single-cycle fission neutron 
distribution, and can be used as a reference solution for assessing convergence of the fission 
neutron distribution. 

While the fission-matrix method has been known since the 1950s (Morton, 1956; Kaplan, 
1958), it suffers from memory storage issues. The fission-matrix F potentially requires N2 
tally bins, so that a modest mesh of 100*100*100 would require 1012 tally bins, an 
excessive amount of memory storage. However, in the current implementation, tallies for 
F are stored using a compressed row storage (CRS) scheme, such that only nonzero tallies 
are stored. If tallies are needed in an empty slot (i.e. a previously-zero location that is not 
stored), then the CRS tallies are automatically extended to include the new entries. The 
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CRS tallies for F are also automatically re-indexed and extended if the underlying mesh is 
extended. 

After cycle 1, inactive cycles proceed in the normal manner, with tallies of Sneut and F made 
at the end of each cycle. The tallies for F are cumulative, including both inactive and active 
cycles. During these cycles, the Sneut and F tallies may be extended if any neutron fission 
sites are found outside the previous mesh. 

The fission-matrix equations are solved after each block of M cycles, where currently M 
defaults to 10 but can be overridden by user input. M is effectively a “window” for solving 
the fission-matrix equations and checking on convergence of the fission neutron 
distribution. Choosing a small value for M reduces the reliability of convergence checking 
and requires more frequent fission-matrix solutions, whereas a large value for M may 
unnecessarily delay the convergence checking; a default of 10 was found sufficient for all 
application problems that were tested. 

In the initial iteration cycles, the Sneut and F tallies may have significant statistical noise 
from the MC random walks, and solution of the fission-matrix equations may be unreliable. 
During the initial iteration cycles, the numbers of nonzero entries in the Sneut and F tallies 
are monitored for changes from one cycle to the next. Currently, if the number of nonzero 
entries in the Sneut tallies changes by more than 2% in successive cycles, or if the number 
of nonzero entries in the F tallies changes by more than 5% in successive cycles, then the 
convergence window is shifted. That is, the block of M cycles is reset and shifted by one 
cycle. The Sneut and F tallies are declared stable enough for solution only after the stability 
tests are met for a consecutive block of M cycles. 

The fission-matrix equations are solved at the end of a block of cycles using a standard, 
brute-force power iteration method. The method is robust, accommodates the non-
symmetric F matrix, and requires only matrix-vector products, thus preserving the sparsity 
of F. Solution of the fission-matrix equations yields kFM, SFM, and ρFM (the dominance 
ratio). 
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3. Statistical tests for convergence of MC criticality calculations 

At the end of a block of cycles, statistical tests for convergence are performed. A 
fundamental question is “What are appropriate statistical tests for convergence?” The 
raison d’être for SG-6 is to consider that question, render comments on existing proposals 
for convergence testing, suggest possible additional convergence tests, comment on the 
quality and effectiveness of the tests, and consider the impact of automated statistical 
convergence testing on both MC code developers and NCS practitioners. 

In many other iterative computational methods for nuclear engineering, convergence of the 
iterations is often found by computing the relative change from one iteration to the next in 
some norm of the solution. Often for criticality calculations using deterministic methods, 
an 𝐿𝐿2 or 𝐿𝐿∞ norm of the fission neutron source distribution is compared between successive 
cycles, and convergence is assumed when the relative change in that norm between cycles 
is less than some prescribed tolerance (Golub and Van Loan, 1989). However, such an 
approach is not reliable and does not work effectively for MC calculations due to the 
statistical noise present in each of the cycles; the change in norm may not be large enough 
relative to the inherent statistical noise to be significant. 

To combat the issue of statistical noise present in each cycle of MC power iterations, one 
approach is to look at a sequence of cycles – a block of cycles – and examine the average 
value of some metric in one block vs the previous block. Another approach is to compute 
by least-squares fitting the slope of some metric over the block of cycles. For a converged 
fission source distribution, there should be steady-state, equilibrium conditions, and every 
metric should have a slope of 0 over the cycles in the block. Due to statistical noise, it is 
appropriate to compute the uncertainty on the least-squares slope, and declare a metric to 
be converged if its least-squares slope is 0 with some statistical confidence level (e.g. 95%). 

For a metric Yi tallied for cycles i=1,…,n in a block of cycles, least-squares fitting to 
y=a+bi is summarised by Bevington (1992) in Equations 6.13, 6.15, 6.23: 

𝑠𝑠𝑥𝑥 = �𝑖𝑖
𝑛𝑛

𝑖𝑖=1

,    𝑠𝑠𝑥𝑥𝑥𝑥 = �𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

,    𝑠𝑠𝑦𝑦 = �𝑌𝑌𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,    𝑠𝑠𝑦𝑦𝑦𝑦 = �𝑌𝑌𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

,     𝑠𝑠𝑥𝑥𝑥𝑥 = �𝑖𝑖 ∙ 𝑌𝑌𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,     ∆= 𝑛𝑛 ∙ 𝑠𝑠𝑥𝑥𝑥𝑥 −  𝑠𝑠𝑥𝑥2      

𝑎𝑎 =
𝑠𝑠𝑥𝑥𝑥𝑥 ∙ 𝑠𝑠𝑦𝑦 − 𝑠𝑠𝑥𝑥 ∙ 𝑠𝑠𝑥𝑥𝑥𝑥

∆
,         𝑏𝑏 =

𝑛𝑛 ∙ 𝑠𝑠𝑥𝑥𝑥𝑥 − 𝑠𝑠𝑥𝑥 ∙ 𝑠𝑠𝑦𝑦
∆

 

The 1-sigma uncertainties on the fitting parameters a and b are: 

𝜎𝜎2 =
∑ (𝑌𝑌𝑖𝑖 − 𝑎𝑎 − 𝑏𝑏 ∙ 𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛 − 2
,            𝜎𝜎𝑎𝑎 =  �𝑠𝑠𝑥𝑥𝑥𝑥 ∙ 𝜎𝜎2 ∆⁄ ,             𝜎𝜎𝑏𝑏 =  �𝑛𝑛 ∙ 𝜎𝜎2 ∆⁄  

Since the slope, b, has a Student’s t distribution, a 95% confidence level for the slope is 
±𝑡𝑡0.025 ∙ 𝜎𝜎𝑏𝑏. In addition, |b|<0.0001 is an absolute test for the slope being negligibly small. 
The “slope test” then becomes: 

If      |𝑏𝑏| < 𝑡𝑡0.025 ∙ 𝜎𝜎𝑏𝑏     𝑜𝑜𝑜𝑜    |𝑏𝑏| < 0.0001,  

then the slope is not different from 0 at a 95% confidence level, and the metric Yi is assumed 
to be stationary over the block of cycles 

3.1 Statistical tests on metrics for cycles within the block 

Seven tests are performed using the slope-test on metrics computed for cycles in the block. 
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1. The slope-test is applied to the single-cycle track-length estimates of keff. 

2. The slope-test is applied to the single-cycle collision estimates of keff. 

3. The slope-test is applied to the single-cycle absorption estimates of keff. 

4. The slope-test is applied to the single-cycle Shannon entropy of Sneut. That is, Hneut 
is computed from Sneut separately for each cycle in the block, then the slope-test is 
applied to the Hneut  values within the block. 

5. The slope-test is applied to the single-cycle marginal distribution in x of Sneut, HX. 

6. The slope-test is applied to the single-cycle marginal distribution in y of Sneut, HY. 

7. The slope-test is applied to the single-cycle marginal distribution in z of Sneut, HZ. 

An eighth test is applied to compare the average Hneut for the block against a reference HFM 
from the fission-matrix solution at the end of the block: 

8. The Sneut tallies for each cycle in the block are accumulated and Hblock is computed 
for the cumulative sources in the block. HFM is then computed for the fission-matrix 
eigenfunction determined at the end of the block. If HFM and Hblock agree within 1%, 
this test provides strong evidence that the reference fission-matrix eigenfunction 
and the cumulative fission neutron source distribution for the block agree. 
However, HFM and Hblock may differ if there is significant source renormalisation 
bias in the neutron distribution. Source renormalisation bias is independent of the 
convergence. That is, if too few neutrons per cycle are used in the calculation, the 
fission neutron source would still converge, but to the wrong, biased solution. (SFM 
from the fission-matrix method is not subject to source renormalisation bias.) Thus, 
passing this test provides evidence of both convergence and an adequate neutron 
population. If the test is not passed, convergence is not precluded, however, since 
the cause may be an inadequate population size. 

3.2. Goodness-of-fit statistical tests on the fission neutron distribution 

At the end of a block of cycles, the fission-matrix equations are solved to provide a 
reference solution, SFM, and the fission neutron distributions, Sneut, from each cycle in the 
block are combined into an average distribution, Sblock, for the fission neutrons. Then three 
goodness-of-fit statistical tests are performed using the distributions Sblock and SFM (Brown 
and Martin, 2018): 

9. The Kolmogorov-Smirnov goodness-of-fit test is applied at the 95% confidence 
level to compare the distributions given by Sblock and SFM. Since these are 
multidimensional distributions, the test is repeated for many random permutations 
of the ordering (e.g. 25 or more), with the worst-case statistic used to determine the 
test outcome. 

10. The Chi-squared 2-point distribution goodness-of-fit test is performed on Sblock and 
SFM at the 95% confidence level. 

11. The relative entropy (Kullback-Leibler discrepancy) (Cover and Thomas, 2006) 
between the distributions for Sblock and SFM is computed. The Kullback-Leibler 
discrepancy is related to the G-test for goodness-of-fit (McDonald, 2015), and is an 
alternative to the chi-squared test. A 95% confidence level may be determined from 
the chi-squared distribution. If this test is passed, it provides strong evidence of 
both fission source convergence and adequate population size. However, as for Test 
8, this test may fail if the population size is too small (leading to source 
renormalisation bias). Thus, passing this test provides evidence of both 
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convergence and an adequate neutron population. If the test is not passed, 
convergence is not precluded, however, since the cause may be an inadequate 
population size. 

It should be noted that Tests 8 and 11 that involve entropy or relative entropy are sensitive 
to the neutron population size (number of neutrons per cycle), whereas Tests 9 and 10 are 
not. The underlying causes of the different sensitivities are not known, and are certainly in 
need of further investigation. 

3.3. Overall convergence assessment 

If all of these statistical tests pass (more precisely, if none fail), then convergence is 
achieved and locked-in for the remainder of the calculation, and active cycles with tallies 
will begin with the next cycle. To declare convergence, Tests 1-7 and 9-10 are required to 
pass. Tests 8 and 11 are not required to pass (since they may be affected by source 
renormalisation bias), but provide additional strong evidence of convergence if they are 
passed. 

Due to the statistical nature of the testing, it is likely that some of the convergence tests 
may not pass in later cycles. Convergence is not rescinded, however. Typically, some tests 
that occasionally fail after convergence are passed on most subsequent cycles. After 
convergence, statistical testing continues to be performed and reported at the end of each 
block of cycles. 
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4. Statistical testing for adequate population size (neutrons per cycle) 

After convergence, two novel statistical tests are made to assess population size (Brown 
and Josey, 2018). The tests are intended to detect whether the number of neutrons/cycle is 
large enough to ensure that the bias in keff is negligible and the shape of the fission 
distribution is correct. The tests are based on comparing the Shannon entropy and relative 
entropy (Kullback-Leibler discrepancy) of Sneut and SFM. If these tests indicate that an 
insufficient number of neutrons/cycle was used, warning messages are issued. In the current 
implementation, the number of neutrons/cycle is not altered in the calculation due to 
concerns over increasing the computer memory and cpu-time, possibly beyond the limits 
of system resources. Future work may lead to an automatic increase in the number of 
neutrons/cycle if the tests are not passed. 
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5. Testing  

The automated acceleration and convergence testing methods have been applied to an 
assortment of criticality problems, including: 

• the Monte Carlo N-Particle transport (MCNP) validation_criticality suite, containing 
31 ICSBEP (NEA, 2019) benchmark problems; 

• the MCNP validation_crit_extended suite, containing 119 ICSBEP benchmark 
problems; 

• a 2D model of a commercial pressurised water reactor (PWR); 

• the Aerojet General Nucleonics (AGN-201) research reactor at the University of New 
Mexico;  

• the Advanced Test Reactor (ATR) at the Idaho National Laboratory; 

• the Annular Core Research Reactor (ACRR) burst reactor at the Sandia National 
Laboratory; 

• the NEA Hoogenboom-Martin 3D reactor computer-performance benchmark 
(Hoogenboom et al., 2011); 

• the 3D C5G7 U-mixed oxide (MOX) OECD/NEA benchmark problem; 

• the ICSBEP benchmark case low enrichment uranium (LEU) LEU-COMP-THERM-
078 (a Sandia experiment); 

• a large 3D storage pool with checkerboard arrangement (NEA EG on source 
convergence benchmark (NEA, 2006) #1); 

• a 400 cm tall single reactor fuel-pin unit cell with reflecting boundary conditions; 

• the Whitesides problem (keff of the world); 

• a 3D Triga reactor model; 

• the OECD/NEA Source Convergence Benchmark (NEA, 2006) #4, test4s; 

• the Godiva high enrichment uranium (HEU) sphere. 

All tests were performed using mcnp6.3, an early version of the next release of mcnp 
tentatively scheduled for 2021. For all of these cases, standard mcnp6 input files were used 
with Evaluated Nuclear Data File (ENDF/B-VII.1) nuclear data. The only additional input 
supplied consisted of commands to activate the fission-matrix treatment, automated 
convergence testing, and fission source acceleration: 

kopts  fmat= yes 

          fmatconvrg= yes 

          fmataccel=   yes 

The acceleration of fission source convergence (Brown et al., 2019) is a separate topic from 
the statistical testing for convergence discussed in this report, but relies on the same mesh, 
neutron distribution tallies and fission-matrix solution referred to herein. If acceleration of 
the fission source convergence is to be performed, importance sampling weights of 
(SFM

(m)/Sneut
(m)) are determined for each fission site, where (m) represents the mesh bin 
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containing the fission site. The importance sampling weights are used in sampling starting 
sites for a cycle from the previous-cycle’s fission bank. While SFM is determined only at 
the end of each block of cycles, the importance sampling weights are updated for each 
cycle, based on the current Sneut. Acceleration is performed only during inactive cycles. The 
acceleration method is a nonlinear acceleration method that essentially pushes the neutron 
distribution towards the reference distribution obtained from the fission-matrix 
eigenfunction. It typically reduces the number of inactive cycles required for convergence 
by factors of 2-20x. 

In all cases tested, the acceleration and diagnostic tests were effective. Following the 
warning advice, increasing the number of neutrons/cycle to larger values resulted in passing 
the population size tests (no warning issued). 

Figure 4 shows some results from testing on the test4s problem (OECD/NEA Source 
Convergence Benchmark 4). The upper plots of keff (for neutrons, fission-matrix, and 
cumulative) and H (for neutrons and fission-matrix) are from a typical traditional 
calculation, where a short trial run is made to determine the number of inactive cycles based 
on plots of keff and Hneut, and then a final run is made after manually setting the number of 
inactive cycles in the mcnp6 input file. The number of inactive cycles is somewhat 
arbitrary, and typical conservative-minded users would choose 150-200 inactive cycles. 
The lower plots of keff and H show results from the automated acceleration and convergence 
methods, with convergence achieved after 31 cycles with no additional user input or trial 
runs. 

Figure 5 shows detailed results for plots of keff (for neutrons, fission-matrix, and 
cumulative) and H (for neutrons and fission-matrix) for the test4s problem for the first 50 
cycles. For the first 11 cycles, changes in either the number of Sneut or F entries delayed the 
start of the auto-convergence testing. After that, Sneut and F are accumulated for a block of 
10 cycles, with metrics such as the track-length keff, collision keff, H and its marginal values 
determined for each cycle in the block. 

Figure 4. Keff and H by cycle for problem test4s, without/with  
automated acceleration and convergence 

 
Source: NEA, 2020.  
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Figure 5. Details of initial cycles for problem test4s 

 
Source: NEA, 2020. 

Figure 6 shows the corresponding screen output for the initial cycles, where the adaptive 
mesh, source tallies and fission-matrix tallies stabilise, followed by a block of cycles. At 
the end of the block, the fission-matrix equations are solved for the fundamental mode 
eigenvalue and eigenfunction. Statistical testing for convergence is then performed, and 
convergence is declared if all of the 11 tests are satisfied. After the initial block of cycles 
is completed and the SFM eigenfunction is known, acceleration of the iteration process can 
be applied. 

Figure 7 shows the results of statistical testing at the end of a block when convergence is 
achieved. It should be noted that the output shown in Figure 7 provides solid statistical 
evidence that convergence has been achieved. The statistical metrics and target values are 
provided for each of the tests. In traditional MC calculations, plots of just keff and H would 
be generated in a trial run and “eyeballed” to assess convergence. The automated methods 
provide far more quantitative evidence for convergence. After convergence, the 
acceleration is discontinued, active cycles are begun and all standard tallies are performed. 
Also after convergence, the statistical tests continue to be performed at the end of each 
block (but convergence is never rescinded) along with two additional tests to source shape. 

Regarding robustness and reliability of the automated methods, all of the 163 test problems 
performed as expected, with no false positives for convergence or false negatives (which 
would not affect results, but would increase computer time). When run using conventional 
methods, the 31 problems in the validation_criticality suite (Mosteller, 2002) required 108 
minutes of run time with mcnp6 using 12 threads. Using the automated acceleration and 
convergence, the same suite of 31 problems required only 70 minutes to complete correctly. 
These and other results demonstrate that the combination of automated methods provides 
effective acceleration and reduces unnecessary conservatism in the number of inactive 
cycles. 
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Figure 6. Details of initial cycles for problem test4s 

 
Source: NEA, 2020. 

Figure 7. Automated convergence reporting for problem test4s 

 
Source: NEA, 2020. 

  



NEA/NSC/R(2021)3 | 27 

  
  

Figures 8-19 show the results of convergence testing for a wide assortment of problems. In 
each of these figures, plots of keff and H are shown for calculations run using the fission-
matrix, acceleration and automated convergence checking. On each of the plots, the number 
of inactive cycles used for a conventional calculation (without acceleration or automated 
convergence checking) is noted. These numbers are typical values, with some coming from 
trial runs to check on convergence of keff and H, and some coming from typical user 
experience. 

The most difficult problem for convergence is the OECD/NEA Source Convergence 
Benchmark #1, a large fuel storage pool where over 2 000 inactive cycles are required for 
convergence using standard methods. With the automated methods, that problem 
converged properly in only 108 cycles, a factor of 20x improvement due to the acceleration 
methods using the fission-matrix. Results for that problem are shown in  
Figure 19. 

Figure 8. Godiva sphere test problem 

 
Source: NEA, 2020. 
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Figure 9. Full-core 2-dimensional PWR test problem 

 
Source: NEA, 2020. 

Figure 10. ATR test problem 

 
Source: NEA, 2020.  
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Figure 11. AGN-201 Research reactor test problem 

 
Source: NEA, 2020. 

Figure 12. C5G7 Benchmark test problem 

 
Source: NEA, 2020. 
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Figure 13. Triga reactor test problem 

 
Source: NEA, 2020. 

Figure 14. ACRR Sandia reactor test problem 

 
Source: NEA, 2020. 
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Figure 15. Sandia critical experiment LCT-078-001 (1057 rods) test problem 

 
Source: NEA, 2020. 

Figure 16. NEA Hoogenboom-Martin Performance Benchmark test problem 

 
Source: NEA, 2020. 
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Figure 17. Whitesides “Keff of the World” test problem 

 
Source: NEA, 2020. 

Figure 18. NEA Source Convergence Problem test4s test problem 

 
Source: NEA, 2020. 
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Figure 19. NEA WPNCS Expert Group on Source Convergence, Benchmark 1 

 
Source: NEA, 2020. 
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6. Additional statistical tests for convergence analysis 

In this section, some additional statistical tests are briefly discussed. These tests were 
examined individually for their effectiveness, and it is highly likely that some or all of these 
proposed tests could be included with the larger suite of tests described in preceding 
portions of this report. As noted several times, no single test can provide overwhelming 
evidence of convergence, but a large collection of tests can; expanding the collection of 
tests is a general goal of SG-6. 

Because the slope-test described above can be applied to any metric that is tallied during 
the cycles in a block, there are many additional test possibilities: 

• 1st, 2nd, and possibly higher moments of the fission neutron distribution in x, y and z. 
Such moments are easy to compute, and convergence of these moments may be an 
indicator of overall convergence of the fission neutron distribution. Higher moments 
may, however, be noisy and less reliable.  

• Nowak (2016) has investigated the use of a generalised entropy function that explicitly 
includes spatial information: 

𝑆𝑆𝑢𝑢,𝑣𝑣,𝑤𝑤
∗ =  −�ℒ𝑢𝑢(𝜉𝜉𝑖𝑖)

𝑖𝑖,𝑗𝑗,𝑘𝑘

ℒ𝑣𝑣�𝜉𝜉𝑗𝑗�ℒ𝑤𝑤(𝜉𝜉𝑘𝑘) ∙ 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘  𝑙𝑙𝑙𝑙𝑙𝑙2(𝑝𝑝𝑖𝑖,𝑗𝑗,𝑘𝑘) 

where ℒ𝑞𝑞(𝜉𝜉) are the Legendre polynomials (other basis sets could also be used), 𝜉𝜉𝑖𝑖 is 
the x-coordinate of the centre of mesh cell I,j,k normalised to the interval [-1,1]. For 
polynomials of order u=v=w=0, the regular Shannon entropy function results. 
Choosing different values for {u,v,w} provides shape-dependent entropy information 
that could be used as metrics for a slope-test of convergence. 

• For loosely-coupled problems, it may be useful to perform cluster analysis of the 
fission neutron distribution to determine the number of clusters, the cluster size and 
cluster separation. Slope-tests could be used to detect stability in these quantities. 
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7. Additional statistical tests investigated using the MONK code 

This section provides a summary of some of the statistical tests for convergence 
investigated using the MONK code.  

Mesh-free fission source convergence tests were constructed based on (1) nearest 
neighbour neutron births in successive cycles, and (2) the differential entropy of the fission 
neutron distribution. For each test, the pass criterion was a p-value greater than 0.05. 
Testing with the  NEA Source Convergence Benchmark, the ATR, the Special Power 
Excursion Reactor Test (SPERT) reactor, and 43 MONK validation cases showed very 
good agreement with reference results for keff. 

7.1. Introduction 

In previous sections, it is shown that no individual test for fission source convergence is 
sufficient to provide a reliable diagnostic of convergence. Rather, a range of tests is 
required and only when all of the tests pass does it give confidence that the fission source 
is adequately converged. The aim of the work presented here is to provide two additional 
candidate tests for fission source convergence. This extends the range of tests available for 
diagnosing convergence. The tests have been investigated using the MONK® Monte Carlo 
criticality code (Richards et al., 2019) and initial testing using: the NEA Source 
Convergence Working Group model, models of the SPERT reactor and ATR, along with 
43 of the MONK validation cases, show promising results. 

The fission source distribution in a Monte Carlo criticality calculation consists of a set of 
points in a three-dimensional spatial domain, defining the locations of the fission source 
neutrons. Both tests are based on a technique (a k-d tree) to efficiently identify the nearest 
neighbour to any of the points in the three-dimensional domain (Bentley, 1975). This is 
described in Section 7.2. 

The test described in Section 7.3 consists of combining the fission source distributions from 
different inactive cycles and determining whether the nearest neighbour of each point 
comes from the same cycle or not, in order to construct a test statistic (Schilling, 1986). 

In Section 7.4, the differential entropy is described, which is a continuous analogue of the 
Shannon entropy discussed in the main text (Singh et al., 2003; Kiedrowski and Beyer, 
2017). This provides a scalar value derived from the fission source distribution for each 
cycle of the calculation. Evaluating the differential entropy for each inactive cycle provides 
a time series with significant stochastic noise. The main text identifies methods for 
diagnosing stationarity of such sequences, such as when the slope of the series is estimated 
to be zero, to within statistics. Another potential method for identifying stationarity is 
presented (Neumann, 1941), providing an alternative diagnostic. 

7.2. Finding the nearest neighbour 

Given a set of points in a three-dimensional space, the nearest neighbour and differential 
entropy tests discussed below both require an efficient method for finding the nearest 
neighbour to a point in the three-dimensional space. One technique for achieving this in an 
efficient manner is to store the points in a k-d tree (Bentley, 1975). 

To build the k-d tree for a set of points in a three-dimensional space, the extent of the space 
in each dimension is determined. At each branch of the tree, the point space is split through 
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the median point along the dimension, which currently has the greatest extent. This 
continues recursively for each branch until there is only one point left, which becomes a 
leaf on the tree. A one-dimensional example of a k-d tree is displayed in Figure 20, with 
the leaves shown as circles. 

Finding the nearest neighbour to a point involves travelling from the root (6.34 in the 
example shown in Figure 20) down the tree going left or right at each branch depending on 
which side of the split the point falls, as shown in Figure 21. Once a leaf is reached it is 
stored as the current nearest neighbour (as long as it is not the same as the chosen point to 
within a specified tolerance). 

The algorithm then retraces its steps back up the tree and at each branch checks to see if 
the distance from the point to the split along the current dimension is less than that of the 
point and its current nearest neighbour. If it is, the algorithm travels down the other side of 
the split checking for leaves that are closer than the current nearest neighbour before 
continuing back up the tree, as shown in Figure 21. For a set of n points, the time taken to 
find the nearest neighbour to a specific point is proportional to log(𝑛𝑛) on average. 

7.3. Nearest neighbour test 

This test relies on the efficient location of nearest neighbour points in three-dimensional 
space, facilitated by the k-d tree data structure described in Section 7.2. 

The nearest neighbour test is based on a statistical test formulated by Schilling (Schilling, 
1986). Consider samples of points in k-dimensional space with sizes 𝑛𝑛1, … ,𝑛𝑛𝑚𝑚 
respectively. The test statistic is calculated by combining the samples and calculating the 
following sum over the 𝑛𝑛 = ∑ 𝑛𝑛𝑗𝑗𝑚𝑚

𝑗𝑗=1  points: 

 𝑇𝑇𝑛𝑛 =
1
𝑛𝑛
� 𝐼𝐼𝑖𝑖

𝑛𝑛

𝑖𝑖=1
  

𝐼𝐼𝑖𝑖 is an indicator function that is equal to 1 when the nearest neighbour of the ith point 
belongs to the same sample and is equal to 0 otherwise. For the purposes of diagnosing 
source convergence, we focus on the particular case of two equal sized samples in three-
dimensional space. Through simulation, for this particular case, Schilling found that 
samples drawn from the same distribution produce statistics that have the following 
distribution: 

 𝑇𝑇𝑛𝑛~�
0.398
𝑛𝑛

𝒩𝒩 + 0.5  

where 𝒩𝒩 is the standard normal distribution, N(0, 1). This can be used to compare birth 
stores in different cycles and calculate a p-value, as described below.  
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Consider the null hypothesis that two birth stores are samples drawn from the same 
distribution. The test statistics will follow the distribution above. If the samples differ 
greatly, the statistic will have a value that is far to the right of the distribution. If the statistic 
has a value that falls far to the left of the distribution, this could suggest that there is a 
strong correlation between the samples. 

As an example, a right tailed p test is performed with a confidence interval of 95%.  
Figure 22 shows the standard normal distribution. Only 5% of samples from the distribution 
are expected to lie in the shaded area of the right tail of the distribution. For two samples 
both of size 100, this region corresponds approximately to a statistic 𝑇𝑇𝑛𝑛 > 0.573 and 𝑝𝑝 <
0.05. If a statistic in this shaded region is obtained, then the null hypothesis that both 
samples are from the same distribution is rejected and the test fails. If it does not, the null 
hypothesis cannot be rejected and it passes. 

 

Figure 22. For the standard normal distribution,  
the shaded area corresponds to α=0.05 for a right tailed test 

 

 
Note: Values to the left of this have a p > 0.05. The x-axis shows standard deviations from the mean. 
Source: NEA, 2020. 

The test can be used to compare the birth store in the current cycle with a number of 
previous cycles defined by the user. In spite of the use of super history powering in the 
MONK code (Brissenden and Garlick, 1986; Richards et al., 2019), some correlation 
between cycles is still seen, particularly for adjacent cycles. This is model-dependent and 
may be mitigated by increasing the number of generations tracked in a super history. In the 
testing performed to date, skipping the previous three cycles was found to eliminate the 
majority of the effect of correlation on the nearest neighbour test.  
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7.4. Differential entropy 

The differential entropy is similar to the Shannon entropy and was proposed by Shannon 
as a continuous extension. It is defined as (Singh et al., 2003): 

 ℎ = −�𝑝𝑝(𝑥𝑥) ln�𝑝𝑝(𝑥𝑥)�
 

𝑉𝑉
𝑑𝑑𝑑𝑑  

Further study has shown that the differential entropy is actually not equivalent to the 
Shannon entropy in the continuous limit (Cover and Thomas, 2006; Kiedrowski and Beyer, 
2017); however, it can still be useful as a source convergence diagnostic. It has the 
advantage over the Shannon entropy of not requiring a mesh to be overlaid on the model. 
This removes the responsibility of the user to determine the optimal mesh dimensions for 
a given model. 

Implementing the differential entropy in its explicit form is non-trivial. Fortunately, it can 
be estimated in three-dimensional space, using an approximation to the differential entropy 
(Kiedrowski and Beyer, 2017): 

 ℎ� =
3
𝑁𝑁
� ln(𝜌𝜌𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

+ ln(𝑁𝑁) + ln �
4𝜋𝜋
3
� + 𝛾𝛾  

 

where 𝜌𝜌𝑖𝑖 is the distance between the ith point and its nearest neighbour, 𝑁𝑁 is the number of 
points and 𝛾𝛾 ≃ 0.5772156649 is the Euler-Mascheroni constant. 

This lends itself well to the way that the positions of the neutron births are kept in the birth 
store. The computationally difficult step is to find the nearest neighbour distances, which 
can be achieved using a k-d tree as described in Section 7.2. 

It remains to be determined when the resulting time series of differential entropy values 
has settled down to its asymptotic value. That is, a method is required to diagnose 
stationarity of a noisy time series. A method for doing this is discussed in Section 7.5. 

7.5. Testing for stationarity of a noisy time series 

A test is required to determine when a time series of data subject to stochastic fluctuations, 
such as those often produced by cycle-wise source convergence diagnostics, has reached a 
steady state. At this point, any remaining variation should be due to stochastic fluctuations. 
A method to test this is proposed based on work by John von Neumann using the 
relationship between the mean squared successive difference and the variance of a sequence 
of observations (Neumann, 1941). 

The mean squared successive difference (mssd) of a data set 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 is defined as: 

 𝛿𝛿2 =
1

𝑛𝑛 − 1
�(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2
𝑛𝑛−1

𝑖𝑖=1

  

It has been found that the mssd divided by 2 is a good estimate of the variance of a random 
sequence in the absence of autocorrelation. 
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Consider drawing pairs of samples 𝑢𝑢1, … ,𝑢𝑢𝑛𝑛 and 𝑣𝑣1, … , 𝑣𝑣𝑚𝑚 from the same normal 
distribution, with variances 𝜎𝜎𝑢𝑢2 and 𝜎𝜎𝑣𝑣2, respectively. The ratio of these variances follows 
the F-distribution (Bevington and Robinson, 1992): 

 
𝜎𝜎𝑢𝑢2

𝜎𝜎𝑣𝑣2
~𝑓𝑓(𝑥𝑥;𝑑𝑑𝑢𝑢,𝑑𝑑𝑣𝑣)   where   𝑑𝑑𝑢𝑢 = 𝑛𝑛 − 1   and   𝑑𝑑𝑣𝑣 = 𝑚𝑚 − 1  

This forms the basis of the F-test. For equality of variance, the two-tailed test should be 
performed. 

Thus, a stationarity test is constructed by taking the ratio of the mssd, 𝛿𝛿2, and the variance, 
𝜎𝜎2, as follows: 

 𝜙𝜙 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
2𝜎𝜎2

𝛿𝛿2
,
𝛿𝛿2

2𝜎𝜎2
 �  

It is easier to calculate the p-value for the right tail of the F-distribution than the left so a 
right tailed test is always performed by having the larger variance in the numerator. The 
two-tailed p-value is then obtained by multiplying by two. Two batches of size of ten both 
have nine degrees of freedom so the two-tailed p-value can be determined using the 
cumulative F-distribution as follows: 

 𝑝𝑝 = 2�1 − 𝐹𝐹(𝜙𝜙; 9,9)�  

Since a batch of data points is required, the batch size will determine the minimum number 
of cycles of the Monte Carlo calculation that need to be performed before stationarity of a 
source convergence diagnostic can be tested. A batch size of ten was found to provide a 
good compromise between the accuracy of the test and the speed of determining 
stationarity. 

Limited testing has shown this method to be reasonably effective; however, there is a risk 
of false positives occurring, particularly when there is a turning point in the series that 
occurs on a length scale that is smaller or similar to the batch size. In Figure 23, this is seen 
to occur in the first batch of ten cycles and also for batches between cycles 50 and 60. 

This issue is largely mitigated by the use of multiple diagnostics (such as those described 
in the previous sections) where the risk of coincidental false positives is low. False positives 
could be further mitigated by increasing the threshold of the p-value for passing or by 
requiring multiple successive passes. However, this could result in an overly conservative 
estimate of the cycle where the source has converged, particularly if many diagnostics are 
being used. 

The batch size can be varied. A smaller batch size is more sensitive to changes on a smaller 
length scale; however, there is a degree of autocorrelation between nearby cycles. Since 
the test relies on the assumption of no autocorrelation for the null hypothesis, the false 
negative rate might be too high for a smaller batch size. 
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Figure 23. Plot of the differential entropy diagnostic overlaid  
with the result of the F-test with a passing threshold set to p>0.05 

 

 
Note: 1 is a pass and 0 is a fail. 
Source: NEA, 2020. 
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8. Conclusion 

The use of many statistical checks for convergence has proven to be robust and reliable. 
Reliably and automatically determining convergence can save computer time, but more 
importantly provides solid quantitative evidence that convergence was achieved. That 
quantitative evidence is important in today’s regulatory environment – “eyeballing the 
plots” is difficult to defend, whereas documented evidence of passing 11 or more statistical 
tests is clear-cut.  

SG-6 was established to exchange technical information on statistical testing to determine 
convergence of the MC power iteration process. Techniques presented in this report 
represent the current state of the art for such testing, but are still a work in progress. It is 
likely that further discussion will lead to the addition of more tests and different types of 
tests. The ultimate goal is a collection of statistical tests for convergence that provides 
overwhelming evidence of convergence, a “guarantee” that convergence was achieved. 

In the future, NCS practitioners should not have to make trial runs or plot Shannon entropy. 
Common user pitfalls and annoyances are removed by the automated convergence and 
statistical testing methods, and quantitative evidence of convergence is provided. Further 
work in progress includes the automated generation of the initial guess for the fission 
neutron locations. 
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